Skip to main content
Log in

A bio-fluidic device for adaptive sample pretreatment and its application to measurements ofEscherichia coli concentrations

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this paper, we describe a bio-fluidic device for adaptive sample pretreatment, in order to optimize the conditions under which absorbance assays can be conducted. This device can be successfully applied to the measurement ofEscherichia coli (E. coli) concentrations using adaptive dilution, with which the dilution ratio can be adjusted during the dilution. Although many attempts have been previously made to miniaturize complex biochemical analyses at the chip scale, very few sample pretreatment processes have actually been miniaturized or automated at this point. Due to the lack of currently available on-chip pretreatments, analytical instruments tend to suffer from a limited range of analysis. This occasionally hinders the direct and quantitative analysis of specific analytes obtained from real samples. In order to overcome these issues, we exploit two novel strategies: dilution with a programmable ratio, and to-and-fro mixing. The bio-fluidic device consists of a rectangular chamber constructed of poly(dimethylsiloxane) (PDMS). This chamber has four openings, an inlet, an outlet, an air control, and an air vent. Each of the dilution cycles is comprised of four steps: detection, liquid drain, buffer injection, and to-and-fro mixing. When using adaptive sample pretreatment, the range in whichE. coli concentrations can be measured is broadened, to an optical density (O. D.) range of 0.3∼30. This device may prove useful in the on-line monitoring of cell concentrations, in both fermenter and aqueous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reyes, D. R., D. Iossifidis, P.-A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology.Anal. Chem. 74: 2623–2636.

    Article  CAS  Google Scholar 

  2. Vilkner, T., D. Janasek, and A. Manz (2004) Micro total analysis systems. Recent developments.Anal. Chem. 76: 3373–3385.

    Article  CAS  Google Scholar 

  3. Tüdös, A. J., G. A. J. Besselink, and R. B. M. Schasfoort (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry.Lab Chip 1: 83–95.

    Article  CAS  Google Scholar 

  4. Voldman, J., M. L. Gray, and M. A. Schmidt (2004) Microfabrication in biology and medicine.Annu. Rev. Biomed. Eng. 1: 401–425.

    Article  Google Scholar 

  5. Kricka, L. J. (1998) Miniaturization of analytical systems.Clin. Chem. 44: 2008–2014.

    CAS  Google Scholar 

  6. Ekins, R. P. (1998) Ligand assays: from electrophoresis to miniaturized microarrays.Clin. Chem. 44: 2015–2030.

    CAS  Google Scholar 

  7. Mitchell, P. (2002) A perspective on protein microarrays.Nat. Biotechnol. 20: 225–229.

    Article  CAS  Google Scholar 

  8. Yang, J., Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation.Anal. Chem. 71: 911–918.

    Article  CAS  Google Scholar 

  9. Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow (2001) Protein sizing on a microchip.Anal. Chem. 73: 1207–1212.

    Article  CAS  Google Scholar 

  10. Mitchell, P. (2001) Microfluidics downsizing large-scale biology.Nat. Biotechnol. 19: 717–721.

    Article  CAS  Google Scholar 

  11. de Mello, A. J. and N. Beard (2003) Dealing with real samples: sample pre-treatment in microfluidic systems.Lab Chip 3: 11N-19N.

    Article  CAS  Google Scholar 

  12. Novic, M., I. Berregi, A. Ríos, and M. Valcárcel (1999) A new sample-injection/sample-dilution system for the flow-injection analytical technique.Anal. Chim. Acta 381: 287–295.

    Article  CAS  Google Scholar 

  13. Cunningham, D. D. (2001) Fluidics and sample handling in clinical chemical analysis.Anal. Chim. Acta 429: 1–18.

    Article  CAS  Google Scholar 

  14. Verpoorte, E. (2002) Microfluidic chips for clinical and forensic analysis.Electrophoresis 23: 677–712.

    Article  CAS  Google Scholar 

  15. Erickson, D. and D. Li (2004) Integrated microfluidic devices.Anal. Chim. Acta 507: 11–26.

    Article  CAS  Google Scholar 

  16. Bessoth, F. G., A. J. de Mello, and A. Manz (1999) Microstructure for efficient continuous flow mixing.Anal. Commun. 36: 213–215.

    Article  CAS  Google Scholar 

  17. Yun, K.-S. and E. Yoon (2004) Microfluidic components and bio-reactors for miniaturized bio-chip applications.Biotechnol. Bioprocess Eng. 9: 86–92.

    Article  CAS  Google Scholar 

  18. Min, J., J.-H. Kim, and S. Kim (2004) Microfluidic device for bio analytical systems.Biotechnol. Bioprocess Eng. 9: 100–106.

    Article  CAS  Google Scholar 

  19. Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides (2002) Chaotic mixer for microchannels.Science 295: 647–651.

    Article  CAS  Google Scholar 

  20. Lu, L.-H., K. S. Ryu, and C. Liu (2002) A magnetic microstirrer and array for microfluidic mixing.J. Microelectromech. Syst. 11: 462–469.

    Article  CAS  Google Scholar 

  21. Chung, Y. C., Y.-L. Hsu, C.-P. Jen, M.-C. Lu, and Y.-C. Lin (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.Lab Chip 4: 70–77.

    Article  CAS  Google Scholar 

  22. Paik, P., V. K. Pamula, and R. B. Fair (2003) Rapid droplet mixers for digital microfluidic systems.Lab. Chip 3: 253–259.

    Article  CAS  Google Scholar 

  23. Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection.Anal. Chim. Acta 507: 145–150.

    Article  CAS  Google Scholar 

  24. Fowler, J., H. Moon, and C.-J. Kim (2002) Enhancement of mixing by droplet-based microfluidics.Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems. January 20–24. Las Vegas, Nevada, USA. pp. 97–100.

  25. Xia, Y. and G. M. Whitesides (1998) Soft lithography.Angew. Chem. Int. Ed. 37: 550–575.

    Article  CAS  Google Scholar 

  26. Choi, O. Z., J. Yu, and J.-K. Park (2004) To-and-fro mixing in micro/nano-fluidic channel.Proceedings of 2nd International Symposium on Nanomanufacturing. November 3–5. Daejeon, Korea. pp. 202–205.

  27. O'Neil, M. J., A. Smith, and R. E. Heckelman (2001)The Merck Index. 13th ed., pp. 799. Merck, NJ, USA.

  28. Kovacs, G. T. A. (1998)Micromachined Transducers Sourcebook. pp. 783. McGraw-Hill, New York, NY, USA.

    Google Scholar 

  29. Truskey, G. A., F. Yuan, D. F. Katz (2004)Transport Phenomena in Biological Systems. pp. 103. Prentice Hall, NJ, USA.

    Google Scholar 

  30. Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli.Biotechnol. Bioprocess Eng. 10: 378–384.

    Article  CAS  Google Scholar 

  31. Ingle, J. D. and S. R. Crouch (1972) Evaluation of precision of quantitative molecular absorption spectrometric measurements.Anal. Chem. 44: 1375–1386

    Article  CAS  Google Scholar 

  32. Rothman, J. D., S. R. Crouch, and J. D. Ingle (1975) Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry.Anal. Chem. 47: 1226–1233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Kyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, W., Park, JK. A bio-fluidic device for adaptive sample pretreatment and its application to measurements ofEscherichia coli concentrations. Biotechnol. Bioprocess Eng. 11, 54–60 (2006). https://doi.org/10.1007/BF02931869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931869

Keywords

Navigation