Skip to main content
Log in

Spreading and mutability ofSelenomonas ruminantium plasmids

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Two small plasmids fromSelenomonas ruminantium strain 19D were cloned inEscherichia coli and completely characterized. Sequence comparison indicated that the plasmids are similar to those reported in genetically vaguely relatedS. ruminantium strain S20. Small 1.4-kb plasmids pSRD191 and pONE430 are only distantly related (≈30 % for deduced Rep protein amino acid sequence) but possess a short highly conserved region outsiderep gene. Larger plasmids pSRD192 and pONE429 possess large identical DNA regions in an otherwise dissimilar background. Recombination is proposed as an important mechanism of evolution and spreading ofS. ruminantium plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Actis L.A., Tolmasky M.E., Crosa J.H.: Bacterial plasmids: replication of extrachromosomal genetic elements encoding resistance to antimicrobial compounds.Front.Biosci. 3, 43–62 (1998).

    Google Scholar 

  • Altschul S.F., Gish W., Myers E.W., Lipman D.J.: Basic local alignment search tool.J.Mol.Biol. 215, 403–410 (1990).

    PubMed  CAS  Google Scholar 

  • Birnboim H.C., Dolly J.: A rapid alkaline lysis procedure for screening recombinant plasmid DNA.Nucl.Acids Res. 7, 1515–1523 (1979).

    Google Scholar 

  • Caldwell D.R., Bryant M.P.: Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria.Appl.Microbiol. 14, 794–801 (1966).

    PubMed  CAS  Google Scholar 

  • Clark B., Holms W.H.: Control of the sequential utilization of glucose and fructose byEscherichia coli.J.Gen.Microbiol. 95, 191–201 (1976).

    CAS  Google Scholar 

  • Fliegerová K., Pažoutová S., Pristaš P., Flint H.J.: Highly conserved DNA sequence present in small plasmids fromSelenomonas ruminantium.Plasmid 44, 94–99 (2000).

    Article  PubMed  Google Scholar 

  • Frazer K.A., Pachter L., Poliakov A., Rubin E.M., Dubchak I.: VISTA: computational tools for comparative genomics.Nucl. Acids Res. 32 (Web Server issue), W273-W279 (2004).

    Article  PubMed  Google Scholar 

  • Hall T.A.: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl.Acids Symp.Ser. 41, 95–98 (1999).

    Google Scholar 

  • Holdeman L.V., Cato E.P., Moore W.E.C.:Anaerobe Laboratory Manual, 4th ed., pp. 117–123. Virginia Polytechnic Institute and State University, Blackburg (USA) 1977.

    Google Scholar 

  • Martin S.A., Dean R.G.: Characterization of a plasmid from ruminal bacteriaSelenomonas ruminantium.Appl.Environ.Microbiol. 55, 3035–3038 (1989).

    PubMed  CAS  Google Scholar 

  • Nakamura M., Nagamine T., Ogata K., Tajima K., Aminov R.I., Benno Y.: Sequence analysis of small cryptic plasmids isolated fromSelenomonas ruminantium S20.Curr.Microbiol. 38, 107–112 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Piknová M., Pristaš P., Javorský P.: GATC-specific restriction-modification systems in ruminal bacteria.Folia Microbiol. 49, 191–193 (2004).

    Article  Google Scholar 

  • Pospiech A., Neumann B.: A versatile quick-prep of genomic DNA from Gram-positive bacteria.Trends Genet. 11, 217 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Pristaš P., Vanát I., Javorský P.: Variability of endonucleolytic activity indicates high genetic diversity within the natural population ofSelenomonas ruminantium.Folia Microbiol. 42, 121–125 (1997).

    Article  Google Scholar 

  • del Solar G., Giraldo R., Ruiz-Echevarria M.J., Espinosa M., Diaz-Orejas R.: Replication and control of circular bacterial plasmids.Microbiol.Mol.Biol.Rev. 62, 434–464 (1998).

    PubMed  Google Scholar 

  • Šprincová A., Javorský P., Pristaš P.: pSRD191, a new member of RepL replicating plasmid family fromSelenomonas ruminantium.Plasmid 54, 39–47 (2005).

    PubMed  Google Scholar 

  • Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J.: 16S ribosomal DNA amplification for phylogenetic study.J.Bacteriol. 173, 697–703 (1991).

    PubMed  CAS  Google Scholar 

  • Xiao J., Melton R.E., Kieser T.: High-frequency homologous plasmid-plasmid recombination coupled with conjugation of plasmid SCP2* inStreptomyces.Mol.Microbiol. 14, 547–555 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported bySlovak Grant Agencies VEGA (grant no. 2/5140/25) and theSlovak Science and Technology Assistance Agency (grant no. APVT 5101 2602).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivan, J., Šprincová, A., Javorský, P. et al. Spreading and mutability ofSelenomonas ruminantium plasmids. Folia Microbiol 51, 283–285 (2006). https://doi.org/10.1007/BF02931814

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931814

Keywords

Navigation