Skip to main content
Log in

Enhancement of erythropoietin production in recombinant Chinese hamster ovary cells by sodium lactate addition

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The stabilization of optimum pH for cells can cause a higher erythropoietin (EPO) production rate and a good growth rate with the prolonged culture span in recombinant Chinese hamster ovary (r-CHO) cells. Our strategy for stabilizing the optimum pH in this study is to reduce the lactate production by adding sodium lactate to a culture medium. When 40 mM sodium lactate was added, a specific growth rate was decreased by approximately 22% as compared with the control culture. However the culture longevity was extended to 187 h, and more than a 2.7-fold increase in a final accumulated EPO concentration was obtained at 40 mM of sodium lactate. On the condition that caused the high production of EPO, a specific glucose consumption rate and lactate production rate decreased by 23.3 and 52%, respectively. Activity of lactate dehydrogenase (LDH) in r-CHO cells increased and catalyzed the oxidation of lactate to pyruvate, together with the reverse reaction, at the addition of 40 mM sodium lactate. The addition of 40 mM sodium lactate caused the positive effects on a cell growth and an EPO production in the absence of carbon dioxide gas as well as in the presence of carbon dioxide gas by reducing the accumulation of lactate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, H., S. An, and T. Choe (2006) Change of insulin-like growth factor gene expression in Chinese hamster ovary cells cultured in serum-free media.Biotechnol. Bioprocess Eng. 11: 319–324.

    Article  CAS  Google Scholar 

  2. Kim, J. S., M. K. Min, and E. C. Jo (2001) High-level expression and characterization of single chain urokinase-type plasminogen activator (scu-PA) produced in recombinant Chinese hamster ovary (CHO) cells.Biotechnol. Bioprocess Eng. 6: 117–127.

    Article  CAS  Google Scholar 

  3. Kato, H., T. Inoue, N. Ishii, Y. Murakami, M. Matsumura, T. Seya, and P. C. Wang (2002) A novel simple method to purify recombinant soluble human complement receptor type 1 (sCR1) from CHO cell culture.Biotechnol. Bioprocess Eng. 7: 67–75.

    Article  CAS  Google Scholar 

  4. Chang, K. H., K. S. Kim, and J. H. Kim (1998) Analysis of erythropoietin glycoform produced by recombinant CHO cells using the lectin-blotting technique.Biotechnol. Bioprocess Eng. 3: 40–43.

    Article  Google Scholar 

  5. Bae, G. W., D. W. Jeong, H. J. Kim, G. M. Lee, H. W. Park, T. B. Choe, S. M. Kang, I. Y. Kim, and I. H. Kim (2006) High productivity of t-PA in CHO cells using hypoxia response element.J. Microbiol. Biotechnol. 16: 695–703.

    CAS  Google Scholar 

  6. Li, J., C. Menzel, D. Meier, C. Zhang, S. Dubel, and T. Jostock (2007) A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies.J. Immunol. Methods 318: 113–124.

    Article  CAS  Google Scholar 

  7. Choi, Y. S., D. Y. Lee, I. Y. Kim, S. Kang, K. Ahn, H. J. Kim, Y. H. Jeong, G. T. Chun, J. K. Park, and I. H. Kim (2000) Ammonia removal using hepatoma cells in mammalian cell cultures.Biotechnol. Prog. 16: 760–768.

    Article  CAS  Google Scholar 

  8. Kim, N. Y., Y. J. Lee, H. J. Kim, J. H. Chol, J. K. Kim, K. H. Chang, J. H. Kim, and H. J. Kim (2004) Enhancement of erythropoietin production from Chinese hamster ovary (CHO) cells by introduction of the urea cycle enzymes, carbamoyl phosphate synthetase 1 and ornithine transcarbamylase.J. Microbiol. Biotechnol. 14: 845–851.

    Google Scholar 

  9. Lao, M. S. and D. Toth (1997) Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture.Biotechnol. Prog. 13: 688–691.

    Article  CAS  Google Scholar 

  10. Omasa, T., K. Higashiyama, S. Shioya, and K. Suga (1992) Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation.Biotechnol. Bioeng. 39: 556–564.

    Article  CAS  Google Scholar 

  11. Ozturk, S. S., M. R. Riley, and B. O. Palsson (1992) Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production.Biotechnol. Bioeng. 39: 418–431.

    Article  CAS  Google Scholar 

  12. Hassell, T., S. Gleave, and M. Butler (1991) Growth inhibition in animal cell culture. The effect of lactate and ammonia.Appl. Biochem. Biotechnol. 30: 29–41.

    Article  CAS  Google Scholar 

  13. Kurano, N., C. Leist, F. Messi, S. Kurano, and A. Fiechter (1990) Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products.J. Biotechnol. 15: 113–128.

    Article  CAS  Google Scholar 

  14. Glacken, M. W., E. Adema, and A. J. Sinskey (1988) Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates.Biotechnol. Bioeng. 32: 491–506.

    Article  CAS  Google Scholar 

  15. Reuveny, S., D. Velez, J. D. Macmillan, and L. Miller (1987) Factors affecting monoclonal antibody production in culture.Dev. Biol. Stand. 66: 169–175.

    CAS  Google Scholar 

  16. Miller, W. M., C. R. Wilke, and H. W. Blanch (1988) Transient responses of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture.Bioprocess Eng. 3: 113–122.

    Article  CAS  Google Scholar 

  17. Singh, R. P., M. Al-Rubeai, C. D. Gregory, and A. N. Emery (1994) Cell death by necrosis and apoptosis during the culture of commercially important cell lines. pp 187–191. In: R. E. Spier, J. B. Griffiths, and W. Berthold (eds.),Animal Cell Technology: Products of Today, Prospects for Tonorrow, Butterworth-Heinemann, Oxford, UK.

    Google Scholar 

  18. Yang, M. and M. Butler (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation.Biotechnol. Bioeng. 68: 370–380.

    Article  CAS  Google Scholar 

  19. Porter, D. L. and M. A. Goldberg (1994) Physiology of erythropoictin production.Semin. Hematol. 31: 112–121.

    CAS  Google Scholar 

  20. Miller, M. E., M. Rorth, H. H. Parving, D. Howard, I. Reddington, C. R. Valeri, and F. Stohlman, Jr. (1973) pH effect on erythropoletin response to hypoxia.N. Engl. J. Med. 288: 706–710.

    CAS  Google Scholar 

  21. Thorens, B. and P. Vassalli (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion.Nature 321: 618–620.

    Article  CAS  Google Scholar 

  22. Glacken, M. W., R. J. Fleischaker, and A. J. Sinskey (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells,Biotechnol. Bioeng. 28: 1376–1389.

    Article  CAS  Google Scholar 

  23. Reitzer, L. J., B. M. Wice, and D. Kennell (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells.J. Biol. Chem. 254: 2669–2676.

    CAS  Google Scholar 

  24. Eagle, H., S. Barban, M. Levy, and H. O. Schulze (1958) The utilization of carbohydrates by human cell cultures.J. Biol. Chem. 233: 551–558.

    CAS  Google Scholar 

  25. Xie, L. and D. I. C. Wang (1994) Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies.Biotechnol. Bioeng. 95: 270–284.

    Article  CAS  Google Scholar 

  26. Miller, W. M., H. W. Blanch, and C. R. Wilke (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous culture: effect of nutrient concentration, dilution rate, and pH.Biotechnol. Bioeng. 32: 947–965.

    Article  CAS  Google Scholar 

  27. Ozturk, S. S. and B. O. Palsson (1991) Growth, metabolic, and antibody production kinetics of hybridoma cell culture: I. Analysis of data from controlled batch reactors.Biotechnol. Prog. 7: 471–480.

    Article  CAS  Google Scholar 

  28. Chiba, S., F. Takaku, T. Tange, K. Shibuya, C. Misawa, K. Sasaki, K. Miyagawa, Y. Yazaki, and H. Hirai (1991) Establishment and erythroid differentiation of a cytokine-dependent human leukemic cell line F-36E: A parental line requiring granulocyte-macrophage colonystimulating factor or interleukin-3, and a subline requiring erythropoietin.Blood 78: 2261–2268.

    CAS  Google Scholar 

  29. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods 65: 55–63.

    Article  CAS  Google Scholar 

  30. Donnelly, M. and I. E. Scheffler (1976) Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture.J. Cell Physiol. 89: 39–51.

    Article  CAS  Google Scholar 

  31. Kimura, R. and W. M. Miller (1996) Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells.Biotechnol. Bioeng. 52: 152–160.

    Article  CAS  Google Scholar 

  32. Madshus, I. H. (1988) Regulation of intracellular pH in eukaryotic cells.Biochem. J. 250: 1–8.

    CAS  Google Scholar 

  33. Gramer, M. J. and C. F. Goochee (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant.Biotechnol. Prog. 9: 366–373.

    Article  CAS  Google Scholar 

  34. Cruz, H. J., C. M. Freitas, P. M. Alves, J. L. Moreira, and M. J. T. Carrondo (2000) Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells.Enzyme Microb. Technol. 27: 43–52.

    Article  CAS  Google Scholar 

  35. Glacken, M. W. (1988) Catabolic control of mammalian cell culture.Bio/Technol. 6: 1041–1050.

    Article  CAS  Google Scholar 

  36. Lanks, K. W. and P. W. Li (1988) End products of glucose and glutamine metabolism by cultured cell lines.J. Cell Physiol. 135: 151–155.

    Article  CAS  Google Scholar 

  37. Petch, D. and M. Butler (1994) Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization.J. Cell Physiol. 161: 71–76.

    Article  CAS  Google Scholar 

  38. Irani, N., M. Wirth, J. van Den Heuvel, and R Wagner (1999) Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction.Biotechnol. Bioeng. 66: 238–246.

    Article  CAS  Google Scholar 

  39. Ljunggren, J. and L. Haggstrom (1994) Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures.Biotechnol. Bioeng. 44: 808–818.

    Article  CAS  Google Scholar 

  40. Flickinger, M. C., N. K. Goebel, T. Bibila, and S. Boyce-Jacino (1992) Evidence for posttranscriptional stimulation of monoclonal antibody secretion by L-glutamine during slow hybridoma growth.J. Biotechnol. 22: 201–226.

    Article  CAS  Google Scholar 

  41. Leno, M., O. W. Merten, and J. Hache (1992) Kinetic analysis of hybridoma growth and monoclonal antibody production in semicontinuous culture.Biotechnol. Bioeng. 39: 596–606.

    Article  CAS  Google Scholar 

  42. Reusch, H. P., J. Lowe, and H. E. Ives (1995) Osmotic activation of a Na+-dependent Cl/HCO3 exchanger.Am. J. Physiol. 268: C147-C153.

    CAS  Google Scholar 

  43. Freshney, R. I. (1994)Culture of Animal Cells: A Manual of Basic Technique. Wiley-Liss, New York, NY, USA.

    Google Scholar 

  44. Oyaas, K., T. M. Berg, O. Bakke, and D. W. Levine (1989) Hybridoma growth and antibody production under conditions of hyperosmotic stress. pp. 212–220. In: R. E. Spier, J. B. Griffiths, and P. J. Crooy (eds.),Advances in Animal Cell Biology and Technology for Bioprocesses, Butterworth, Kent, UK.

    Google Scholar 

  45. Oyaas, K., T. E. Ellingsen, N. Dyrset, and D. W. Levine (1994) Utilization of osmoprotective compounds by hybridoma cells exposed to hyperosmotic stress.Biotechnol. Bioeng. 43: 77–89.

    Article  CAS  Google Scholar 

  46. Kurano, N., C. Leist, F. Messi, S. Kurano, and A. Fiechter (1990) Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 1. Effects of physical and chemical environments.J. Biotechnol. 15: 101–111.

    Article  CAS  Google Scholar 

  47. Bibila, T. A., C. S. Ranucci, K. Glazomitsky, B. C. Buckland, and J. G. Aunins (1994) Monoclonal antibody process development using medium concentrates.Biotechnol. Prog. 10: 87–96.

    Article  CAS  Google Scholar 

  48. Nuss, D. L. and G. Koch (1976) Variation in the relative synthesis of immunoglobulin G and non-immunoglobulin G proteins in cultured MPC-11 cells with changes in the overall rate of polypeptide chain initiation and elongation.J. Mol. Biol. 102: 601–612.

    Article  CAS  Google Scholar 

  49. Oh, S. K. W., P. Vig, F. Chua, W. K. Teo, and M. G. S. Yap (1993) Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate.Biotechnol. Bioeng. 42: 601–610.

    Article  CAS  Google Scholar 

  50. Oh, S. K. W., F. K. F. Chua, and A. B. H. Choo (1995) Intracellular responses of productive hybridomas subjected to high osmotic pressure.Biotechnol. Bioeng. 46: 525–535.

    Article  CAS  Google Scholar 

  51. Oyaas, K., T. E. Ellingsen, N. Dyrset, and D. W. Levine (1994) Hyperosmotic hybridoma cell cultures: Increased monoclonal antibody production with addition of glycine betaine.BIotechnol. Bioeng. 44: 991–998.

    Article  CAS  Google Scholar 

  52. Ozturk, S. S. and B. O. Palsson (1991) Effect of medium osmolarity on hybridoma growth, metabolism, and antibody production.Biotechnol. Bioeng. 37: 989–993.

    Article  CAS  Google Scholar 

  53. Park, S. Y. and G. M. Lee (1995) Feasibility study on the use of hyperosmolar medium for improved antibody production of hybridoma cells in a long-term, repeated-fed batch culture.Bioprocess Eng. 13: 79–86.

    Article  CAS  Google Scholar 

  54. Reddy, S., K. D. Bauer, and W. M. Miller (1992) Determination of antibody content in live versus dead hybridoma cells: Analysis of antibody production in osmotically stressed cultures.Biotechnol. Bioeng. 40: 947–964.

    Article  CAS  Google Scholar 

  55. Reddy, S. and W. M. Miller (1994) Effects of abrupt and gradual osmotic stress on antibody production and content in hybridoma cells that differ in production kinetics.Biotechnol. Prog. 10: 165–173.

    Article  CAS  Google Scholar 

  56. Sureshkumar, G. K. and R. Mutharasan (1991) The influence of temperature on a mouse-mouse hybridoma growth and monoclonal antibody production.Biotechnol. Bioeng. 37: 292–295.

    Article  CAS  Google Scholar 

  57. Lee, M. S., K. W. Kim, Y. H. Kim, and G. M. Lee (2003) Proteome analysis of antibody-expressing CHO cells in response to hyperosmotic pressure.Biotechnol. Prog. 19: 1734–1741.

    Article  CAS  Google Scholar 

  58. Kim, N. S. and G. M. Lee (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression.J. Biotechnol. 95: 237–248.

    Article  CAS  Google Scholar 

  59. Berg, T. M., K. Oyaas, and D. W. Levine (1990) Growth and antibody production of hybridoma cells exposed to hyperosmotic stress. pp. 93–97. In: H. Murakami (ed.).Trends in Animal Cell Culture Technology. VCH, New York, NY, USA.

    Google Scholar 

  60. Lee, G. M. and S. Y. Park (1995) Enhanced specific antibody productivity of hybridomas resulting from hyperosmotic stress is cell line-specific.Biotechnol. Lett. 17: 145–150.

    Article  CAS  Google Scholar 

  61. Lilley, D. M., M. F. Jacobs, and M. Houghton (1979) The nature of the interaction of nucleosomes with a eukaryotic RNA polymerase II.Nucleic Acids Res. 7: 377–399.

    Article  CAS  Google Scholar 

  62. Walter, W. and V. M. Studitsky (2001) Facilitated transcription through the nucleosome at high ionic strength occurs via a histone octamer transfer mechanism.J. Biol. Chem. 276: 29104–29110.

    Article  CAS  Google Scholar 

  63. Ryu, J. S. and G. M. Lee (1997) Effect of hypoosmotic stress on hybridoma cell growth and antibody production.Biotechnol. Bioeng. 55: 565–570.

    Article  CAS  Google Scholar 

  64. Huston, J. S., W. W. Fish, K. G. Mann, and C. Tanford (1972) Studies on the subunit molecular weight of beef heart lactate dehydrogenase.Biochemistry 11: 1609–1612.

    Article  CAS  Google Scholar 

  65. Dewey, M. M. and J. L. Conklin (1960) Starch gel electrophoresis of lactic dehydrogenase from rat kidneys.Proc. Soc. Exp. Biol. Med. 105: 492–494.

    CAS  Google Scholar 

  66. Van der Helm, H. J. (1961) Simple method of demonstrating lactic acid dehydrogenase isoenzyme.Lancet 2: 108.

    Google Scholar 

  67. Starkweather, W. H., H. H. Spencer, E. L. Schwarz, and H. K. Schoch (1966) The electrophoretic separation of lactate dehydrogenase isoenzymes and their evaluation in clinical medicine.J. Lab. Clin. Med. 67: 329–343.

    CAS  Google Scholar 

  68. Millar, D. B. S., M. R. Summers, and J. A. Niziolek (1971) Spontaneousin vitro hybridization of LDH homopolymers in the undenatured state.Nat. New. Biol. 230: 117–119.

    Article  CAS  Google Scholar 

  69. Blanco, A. and W. H. Zinkham (1963) Lactate dehydrogenase in human testes.Science 139: 601–602.

    Article  CAS  Google Scholar 

  70. Voet, D. and J. G. Voet (1995)Biochemistry, pp. 465. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  71. Brooks, G. A., H. Dubouchaud, M. Brown, J. P. Sicurello, and C. E. Butz (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.Proc. Natl. Acad. Sci. USA 96: 1129–1134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik-Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.S., Lee, D.Y., Kim, I.Y. et al. Enhancement of erythropoietin production in recombinant Chinese hamster ovary cells by sodium lactate addition. Biotechnol. Bioprocess Eng. 12, 60–72 (2007). https://doi.org/10.1007/BF02931805

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931805

Keywords

Navigation