Skip to main content
Log in

Factors affecting the outcome of the acidification power test of yeast quality: Critical reappraisal

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Brewery bottom yeast strain 95 from thePilsner Urquell propagation unit was used to reappraise the efficiency of the acidification power (AP) test consisting in determining the spontaneous (oxygen-induced) and glucose-induced medium acidification caused by yeast and lactic acid bacteria under standard conditions, and used widely for assessing and predicting the vitality of industrial strains. AP was evaluated in yeast stored for different periods of time (0–28 d) at 4 °C, at different temperatures before and during the test (0–55 °C), and at different concentrations of cells and glucose and different cells-to-glucose ratios. All these factors had a strong effect on acidification kinetics and the AP value. By contrast, the duration of the lag period between yeast collection and the test (0–6 h) had no perceptible effect on the AP value. The best results were achieved at saturation concentrations of cells (>10 g pressed yeast or ≈14 g yeast slurry per 100 mL) and glucose (≈3 %) and at 25 °C. Since an exact evaluation of acidification characteristics depends strongly on the kinetics of the process, the AP test should include monitoring the time course of the acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

acidification power

APmin :

acidification power calculated with the aid of ΔpHsp min

ΔpH10 :

pH change after 10 min

ΔpH20 :

pH change after 20 min

ΔpHsp :

spontaneous pH change after suspending yeast in water

ΔpHGlc :

Glc-induced pH change

YATA:

yeast acidification and turbidity analyzer

ΔpHmin :

pH change at the moment of strongest acidification (attainment of lowest pH value)

ΔpHsp min :

pH change at the moment of the strongest spontaneous acidification (attainment of the lowest pH value)

References

  • Collar C., Bollain C., Angioloni A.: Significance of microbial transglutaminase on the sensory, mechanical and crumb grain patterns of enzyme supplemented fresh pan breads.J.Food Engn. 70, 479–488 (2005).

    Google Scholar 

  • Fernandez S.S., Gonzales G., Sierra J.A.: The acidification power test and the behavior of yeast in brewery fermentations.Tech. Quart.Master Brew.Assoc.Am. 28, 28–95 (1991).

    Google Scholar 

  • Fernandez S.S., Gonzalez M.G., Sierra J.A.: Evaluation of the effect of acid washing on the fermentative and respiratory behavior of yeasts by the acidification power test.Tech.Quart.Master Brew.Assoc.Am. 30, 1–8 (1993).

    CAS  Google Scholar 

  • Gatto E., Peddie F., Andrews S.: Acidification power: performance evaluation of freeze-dried lactic acid bacteria.Food Australia 45, 124–128 (1993).

    Google Scholar 

  • Higgins V.J., Bell P.J.L., Dawes I.A., Attfield P.V.: Generation of a novelSaccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques.Appl.Environ.Microbiol. 67, 4346–4348 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Imai T., Nakajima I., Ohno T.: Development of a new method for evaluation of yeast vitality by measuring intracellular pH.Tech. Quart.Master Brew.Assoc.Am. 30, 109–113 (1993).

    CAS  Google Scholar 

  • Iserentant D., Geenens W., Verachtert H.: Titrated acidification power: a simple and sensitive method to measure yeast vitality and its relation to other vitality measurements.J.Am.Soc.Brew.Chem. 54, 110–114 (1996).

    CAS  Google Scholar 

  • Kara B.V., Simpson W.M., Hammond R.M.: Prediction of the fermentation performance of brewing yeast with the acidification power test.J.Inst.Brew. 94, 153–158 (1988).

    Google Scholar 

  • Lawrence D.R.: Brewing yeast fermentation performance.Internat.J.Food Sci.Technol. 37, 337–338 (2002).

    Article  CAS  Google Scholar 

  • Malfeito-Ferreira M., Guerra J.P.M., Loureiro V.: Proton extrusion as indicator of the adaptive state of yeast starters for the continuous production of sparkling wines.Am.J.Enol.Viticult. 41, 219–222 (1990).

    CAS  Google Scholar 

  • Mathieu C., Van den Bergh L., Isenrentant D.: Prediction of yeast fermentation performance using the acidification power test. pp. 273–280 inProc. 23rd Internat. Congr. Eur. Brew. Convention, Lisbon (Portugal) 1991.

  • Opekarová M., Sigler K.: Acidification power: indicator of metabolic activity and autolytic changes inSaccharomyces cerevisiae.Folia Microbiol. 27, 395–403 (1982).

    Article  Google Scholar 

  • Patino H., Edelen C., Miller J.: Alternative measures of yeast vitality: use of cumulative acidifcation power and conductance.J.Am.Soc.Brew.Chem. 51, 128–132 (1993).

    CAS  Google Scholar 

  • Peddie F.L., Simpson W.J., Kara B.V., Robertson S.C., Hammond J.R.M.: Measurement of endogenous oxygen uptake rates of brewer’s yeast.J.Inst.Brew. 97, 21–25 (1991).

    Google Scholar 

  • Quain D.E.: Studies on yeast physiology — impact on fermentation performance and product quality.J.Inst.Brew. 89, 38–40 (1988).

    Google Scholar 

  • Rechinger K.B., Siegumfeldt H.: Rapid assessment of cell viability ofLactobacillus delbrueckii subsp.bulgaricus by measurement of intracellular pH in individual cells using fluorescence ratio imaging microscopy.Internat.J.Food Microbiol. 75, 53–60 (2002).

    Article  Google Scholar 

  • Riis S.B., Pedersen H.M., Sorensen N.K., Jakobsen M.: Flow cytometry and acidification power test as rapid techniques for determination of the activity of starter cultures ofLactobacillus delbrueckii spp.bulgaricus.Food Microbiol. 12, 245–250 (1995).

    Article  Google Scholar 

  • Rodrigues P.G., Barros A.A., Rodrigues J.A., Ferreira A.A., Goncalves C., Hammond J.R.M.: Yeast quality control in industrial brewing process using vitaltitration, a new method for vitality determination. Contribution 57,Proc. 29th Internat. Congr. Eur. Brew. Convention, Dublin (Ireland) 2003.

  • Semjonovs P., Marauska M., Linde R., Grube M., Zikmanis P., Bekers M.: Development ofBifidobacterium lactis Bb 12 on β-(2,6)-linked fructan-containing substrate.Eng.Life Sci. 4, 433–437 (2004).

    Article  CAS  Google Scholar 

  • Shen H.Y., Moonjai N., Verstrepen N., Delvaux F.R.: Impact of attachment immobilization on yeast physiology and fermentation performance.J.Am.Soc.Brew.Chem. 61, 79–87 (2003).

    CAS  Google Scholar 

  • Sigler K., Knotková A., Kotyk A.: Factors governing substrate-induced generation and extrusion of protons in the yeastSaccharomyces cerevisiae.Biochim.Biophys.Acta 643, 572–582 (1981a).

    Article  CAS  PubMed  Google Scholar 

  • Sigler K., Kotyk A., Knotková A., Opekarová M.: Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeastSaccharomyces cerevisiae.Biochim.Biophys.Acta 643, 583–592 (1981b).

    Article  CAS  PubMed  Google Scholar 

  • Sigler K., Pascual C., Romay C.: Intracellular control of proton extrusion inSaccharomyces cerevisiae.Folia Microbiol. 28, 363–370 (1983).

    Article  CAS  Google Scholar 

  • Šusta J., Hodaň J., Opekarová M., Sigler K.: A simple method for determining the metabolic activity of brewer’s yeast during the brewing process.Food Microbiol. 1, 169–171 (1984).

    Article  Google Scholar 

  • Van Zandycke S.M., Siddique R., Smart K.A.: Yeast membrane potential and carbohydrate utilization, pp. 334–343 inProc. 28th Internat. Congr.Eur.Brew. Convention, Budapest (Hungary) 2001.

  • Vincent S.F., Bell P.J.L., Bissinger P., Nevalainen K.M.-H.: Comparison of melibiose utilizing baker’s yeast strains produced by genetic engineering and classical breeding.Lett.Appl.Microbiol. 28, 148–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Wackerbauer K., Ludwig A., Mohle J.: Improvement of long term stability in main fermentations with immobilized yeast — II. Trials in MPI-reactor and evaluation of yeast vitality in the immobilized system.Monatsschr.Brauwissen. 55, 172–181 (2002).

    CAS  Google Scholar 

  • Yoshikawa S., Chikara K.I., Hashomoto H., Mirsui N., Shimosaka M., Okazaki M.: Isolation and characterization ofZygosaccharomyces rouxii mutants defective in proton pump out activity and salt tolerance.J.Ferment.Bioeng. 79, 6–10 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sigler.

Additional information

This work was supported by Research Center IM 0570 of theMinistry of Education, Youth and Sports of the Czech Republic and by theInstitutional Research Concepts of theInstitute of Microbiology (AV 0Z 5020 0510), theResearch Institute of Brewing and Malting (MSM 601 936 9701) andFaculty of Mathematics and Physics, Charles University (MSM 002 162 0835).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigler, K., Mikyška, A., Kosař, K. et al. Factors affecting the outcome of the acidification power test of yeast quality: Critical reappraisal. Folia Microbiol 51, 525–534 (2006). https://doi.org/10.1007/BF02931616

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931616

Keywords

Navigation