Skip to main content
Log in

Effect of short-chain acids on the carboxymethylcellulase activity of the ruminal bacteriumRuminococcus albus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The addition of 100–300 mmol/L of acetic, propionic, butyric or lactic acids (short-chain acids), or of acetic, propionic, and butyric acids (volatile fatty acids, VFA) mixtures increased the degradation of carboxymethyl cellulose (CMC) byR. albus (7.5 to 46 and 6 to 39%, respectively). Differences among individual acids were observed at 300 mmol/L whereas VFA mixtures differed at 100 mmol/L. When assayed at the same concentration, CMCase activity was increased less by NaCl than by the short-chain acids, whereas ethylene glycol decreased the activity. Since osmolarity and/or ionic strength changes in the medium cannot completely account for the observed increases of carboxymethylcellulase (CMCase) activity, it is suggested that the anions of short-chain acids produce changes in the reaction media polarity that contribute to the effects observed. Alterations in the media could also bring about conformational changes in CMCase leading to increased rates of reaction and subsequent increases in CMC degradation. Finally, explanations for the observed phenomena based on the direct effect of the compounds tested on the cellulosome complex, its domains, and/or its component enzymes are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMC:

carboxymethyl cellulose

CMCase:

carboxymethylcellulase

VFA:

volatile fatty acids

References

  • Attwood G.T., Herreras F., Weissensten L., White B.A.: An endo-β-1,4-glucanase gene (celA) from the rumen anaerobeRuminococcus albus 8: cloning, sequencing, and transcriptional analysis.Can.J.Microbiol. 42, 267–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Barry T.N., Thompson A., Armstrong D.G.: Rumen fermentation studies on two contrasting diets.J.Agric.Sci.Combr.89, 183–195 (1977).

    Article  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding.Anal.Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Caldwell R.D., Bryant M.P.: Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria.Appl.Microbiol. 14, 794–801 (1966).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collins K.D., Washabaugh M.W.: The Hofmeister effect and the behaviour of water at interfaces.Quart.Rev.Biophys. 18, 323–422 (1985).

    Article  CAS  Google Scholar 

  • Counotte G.H., Prins R.A.: Regulation of rumen lactate metabolism and the role of lactic acid in nutritional disorders of ruminants.Vet.Sci.Commun. 2, 227–303 (1979).

    Google Scholar 

  • Dijkstra J.: Production and absorption of volatile fatty acids in the rumen.Livest.Prod.Sci. 39, 61–69 (1994).

    Article  Google Scholar 

  • Fay J.P., Ovejero F.M.A.: Effect of lactate on thein vitro digestion ofAgropyron elongatum by rumen microorganisms.Anim.Feed Sci.Technol. 16, 161–167 (1986).

    Article  CAS  Google Scholar 

  • Forsberg C.W., Cheng K.-J., White B.A.: Polysaccharide degradation in the rumen and large intestine, pp. 319–379 in R. Onodera, H. Itabashi, K. Ushida, H. Yano, Y. Sasaki (Eds):Rumen Microbes and Digestive Physiology in Ruminants. Japan Sci. Soc. Press, Tokyo-S. Karger, Basel 1998.

    Google Scholar 

  • Gouws L., Kistner A.: Bacteria of bovine rumen. IV. Effect of change of diet on the predominant type of cellulose-digesting bacteria.J.Agric.Sci. 64, 51–57 (1965).

    Article  Google Scholar 

  • Hatefi Y., Hanstein W.G.: Solubilization of particulate proteins and nonelectrolytes by chaotropic agents.Proc.Nat.Acad.Sci.USA 62, 1129–1136 (1969).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hungate R.E.:The Rumen and Its Microbes. Academic Press, New York 1966.

    Google Scholar 

  • Jalč D., Kišidayová S., Nerud F.: Effect of plant oils and organic acids on rumen fermentationin vitro.Folia Microbiol. 47, 171–178 (2002).

    Article  Google Scholar 

  • Karita S., Sakka K., Ohmiya K.: Cellulosomes and cellulase complexes of anaerobic microbes: their structure, models and function, pp. 47–57 in R. Onodera, H. Itabashi, K. Ushida, H. Yano, Y. Sasaki (Eds):Rumen Microbes and Digestive Physiology in Ruminants. Japan Sci. Soc. Press, Tokyo - S. Karger. Basel 1998.

    Google Scholar 

  • Krause D.O., Denman S.E., Mackie R.I., Morrison M., Rae A.L., Attwood G.T., McSweenery C.S.: Opportunities to improve fiber degradation in the rumen: microbiology ecology, and genomics.FEMS.Microbiol.Rev. 27, 663–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Leatherwood J.M.: Ceflulase fromKuminococcus arbus and mixed rumen microorgamms.Appl.Microbiol. 13, 771–775 (1965).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marounek M., Skřivanova E., Rada V.: Susceptibility ofEscherichia coli to C2-C18 fatty acids.Folia Microbiol. 48, 731–736 (2003).

    Article  CAS  Google Scholar 

  • Morrison M., Miron J.: Adhesion to cellulose byRuminococcus albus: a combination of cellulosomes and Pil-proteins?FEMS Microbiol.Lett. 185, 109–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Miron J., Jacobovitch J., Bayer E.A., Lamed R., Morrison M., Ben-Ghedalia D.: Subcellular distribution of glycanase and related components inRuminococcus albus SY3 and their role in cell adhesion to cellulose.J.Appl.Microbiol. 91, 677–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ohmiya K., Maeda K., Shimizu S.: Purification and properties of endo-(1,4)-β-d-glucanase fromRuminococcus albus.Carbohydr.Res. 166, 145–155 (1987).

    Article  CAS  Google Scholar 

  • Paggi R.A., Fay J.P.: Effect of short-chain fatty acids on growth of the ruminal bacteriumStreptococcus bovis.J.Gen.Appl.Microbiol. 42, 393–400 (1996).

    Article  CAS  Google Scholar 

  • Paggi R.A., Fay J.P., Fernández H.M.: Effect of short-chain acids and glycerol on the proteolytic activity of rumen fluid.Anim.Feed Sci.Technol. 78, 341–347 (1999a).

    Article  CAS  Google Scholar 

  • Paggi R.A., Fay J.P., Fernández H.M.: Effect of end products of ruminal fermentation onRuminococcus albus growth.Anaerobe 5, 309–311 (1999b).

    Article  CAS  Google Scholar 

  • Pedgen R.S., Larson M.A., Grant R.J., Morrison M.: Adherence of the Gram-positive bacteriumRuminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family proteins.J.Bacteriol. 180, 5921–5927 (1998).

    Google Scholar 

  • Poole D.M., Hazufwood G.P., Laurie J.I., Barker P.J., Gilbert H.J.: Nucleotide sequence of theRuminococcus albus SY3 endoglucanase genescelA andcelB.Mol.Gen.Genet. 223, 217–223 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Roger V., Fonty G., Andre C., Gout P.: Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi.Curr.Microbiol. 25, 197–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Russell J.B., Diezgonzález F.: The effects of fermentation acids on bacterial growth.Adv.Microbiol.Physiol. 39, 205–234 (1998).

    Article  CAS  Google Scholar 

  • Smith W.R., Yu I., Hungate R.F.: Factors affecting cellulolysis byRuminococcus albus.J.Bacteriol. 89, 1169–1175 (1973).

    Google Scholar 

  • Stack R.J., Hungate R.E.: Effect of 3-phenylpropanoic acid on capsule and cellulases ofRuminococcus albus 8.Appl.Environ.Microbiol. 48, 218–223 (1984).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stack R.J., Hungate R.E., Opsahl W.P.: Phenylacetic acid stimulation of cellulose digestion byRuminococcus albus 8.Appl.Environ.Microbiol. 46, 539–544 (1983).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wood T.M., Bhat M.: Methods for measuring cellulase activities.Meth.Enzymol. 160, 87–112 (1988).

    Article  CAS  Google Scholar 

  • Wood T.M., Wilson C.A., Stewart C.S.: Preparation of the cellulase from the cellulolytic anaerobic bacteriumRuminococcus albus and its release from the bacterial cell wall.Biochem.J. 205, 129–137 (1982).

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Paggi.

Additional information

The second author was a career researcher at theConsejo Nacional de Investigaciones Cientificas y Técnicas de la Republica Argentina (CONICET). This research was partly supported by grants from theUniversidad Nacional de Mar del Plata and the Comisión de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paggi, R.A., Fay, J.P. Effect of short-chain acids on the carboxymethylcellulase activity of the ruminal bacteriumRuminococcus albus . Folia Microbiol 49, 479–483 (2004). https://doi.org/10.1007/BF02931612

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931612

Keywords

Navigation