Skip to main content
Log in

Antimicrobial resistance ofEnterococcus spp. isolates from raw beef and meat products

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

E. faecalis (67 %) andE. faecium (13.7 %) were most frequently isolated among enterococci that contaminate cooled and frozen processed meat, follow-up heat-treated meat products and unheated fermented dry salami. Most isolates of both species were resistant to cephalothin (95 and 83 %) and clindamycin (77 and 67 %, respectively). Furthermore,E. faecalis andE. faecium isolates were resistant to erythromycin (44 and 72 %), tetracycline (34.5 and 17.4 %), and streptomycin (13.3 and 4.3 %, respectively). Only a few of the isolates were resistant to ampicillin, ampicillin-sulbactam, chloramphenicol, and vancomycin while all isolates were susceptible to gentamicin, penicillin, and teicoplanin. During the production of heat-treated meat products, numbers of resistant isolates increased in spite of the decreasing enterococcal contamination of the samples. An opposite situation was found in the production of fermented dry salami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP:

ampicillin

AMS:

ampicillin-sulbactam

CLI:

clindamycin

CLT:

cephalothin

CMP:

chloramphenicol

ERY:

erythromycin

FDS:

fermented dry salami

GEN:

gentamicin

HL:

high level

HL-AR:

resistance to high level of aminoglycosides

HTMP:

heat-treated meat products

PEN:

penicillin

STR:

streptomycin

TEI:

teicoplanin

TET:

tetracycline

VAN:

vancomycin

VRE:

vancomycin-resistan enterococci

References

  • Aarestrup F.M.: Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals.Internat.J.Antimicrob.Agents 12, 279–285 (1999).

    Article  CAS  Google Scholar 

  • Aarestrup F.M., Agerso Y., Gerner-Smidt P., Madsen M., Jensen L.B.: Comparison of antimicrobial resistance phenotypes and resistance genes inEnterococcus faecalisandEnterococcus faecium from humans in the community, broilers and pigs in Denmark.Diagn.Microbiol.Infect.Dis. 37, 127–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Aleksieva V.: Isolation and cold resistance of enterococci in ice cream.Vet.Med.Nauki 4, 37–42 (1977).

    Google Scholar 

  • Armitage P., Barry G.:Statistical Methods in Medical Research, 2th ed. Blackwell Scientific Publications, Oxford 1987.

    Google Scholar 

  • Bager F., Madsen M., Christensen J., Aarestrup F.M.: Avoparcin used as a growth promotor is associated with the occurrence of vancomycin-resistantEnterococcus faecium on Danish poultry and pigs farms.Prev.Vet.Med. 31, 95–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Banwart G.J.:Basic Food Microbiology. Chapman and Hall, New York 1989.

    Google Scholar 

  • Bonora M.G., Boldrin C., Bragagnolo L., Cirelli L., De Fatima M., Grossato A., Ligozzi M., Lo Cascio G., Fontana R., Bordin C.: Molecular analysis of enterococci isolated from humans and animals in north-eastern Italy.Microb.Drug Resist. 7, 247–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bradley C.R., Fraise A.P.: Heat and chemical resistance of enterococci.J.Hosp.Infect. 34, 191–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Chadwick P.R., Woodford N., Kaczmarski B.E., Gray S., Barrell R.A., Oppenheim B.A.: Glycopeptide-resistant enterococci isolated from uncooked meat.J.Antimicrob.Chemother. 38, 908–909 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Chingwaru W., Mpuchane S.F., Gashe B.A.:Enterococcus faecalis andEnterococcus faecium isolates from milk, beef, and chicken and their antibiotic resistance.J.Food Prot. 66, 931–936 (2003).

    CAS  PubMed  Google Scholar 

  • Cintas L.M., Casaus P., Havarstein L.S., Hernandez P.E., Nes I.F.: Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin fromEnterococcus faecium P13 with a broad antimicrobial spectrum.Appl.Environ.Microbiol. 63, 4321–4330 (1997).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dina J., Malbruny B., Leclercq R.: Nonsense mutations in thelsa-like gene inEnterococcus faecalis isolates susceptible to lincos-amides and streptogramins A.Antimicrob Agents Chemother 47, 2307–2309 (2003).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Directive of the Ministry of Health of the Czech Republic on the permissible limits of animal drugs and biologically active agent residues present in food and raw materials for food no. 273, 3782–3829 (2000).

  • Drahovska H., Kocincova D., Seman M., Turńa J.: PCR-based methods for identification ofEnterococcus species.Folia Microbiol. 47, 649–653 (2002).

    Article  CAS  Google Scholar 

  • Eaton T.J., Gasson M.J.: Molecular screening ofEnterococcus virulence determinants and potential for genetic exchange between food and medical isolates.Appl.Environ.Microbiol. 67, 1628–1635 (2001).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • European Agency for the Evaluation of Medical Products (EMEA):Antibiotics resistance in the European union associated with therapeutic use of veterinary medicines; report and qualitative risk assessment, by the committee for veterinary medicinal products (1999); in S. Schwarz, E. Chaslus-Dancla: Use of antimicrobials in veterinary medicine and mechanisms of resistance.Vet.Res. 32, 201–225 (2001).

    Article  Google Scholar 

  • Franz C.M.A.P., Holzapfel W.H., Stiles M.E.: Enterococci as crossroads of food safety?Internat.J.Food. Microbiol. 47, 1–24 (1999).

    Article  CAS  Google Scholar 

  • Gordon C.L., Ahmad M.H.: Thermal susceptibility ofStreptococcus faecium strains isolated from frankfurters.Can.J.Microbiol. 37, 609–612 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hindler J., Hochstein L., Howell A.: Preparation of routine media and reagents used in antimicrobial sensitivity testing, pp. 1–30 in H.D. Isenberg (Ed.):Clinical Microbiology Procedures Handbook. Am. Soc. Microbiol., Washington 1992.

    Google Scholar 

  • Houben J.H.: Heat resistance ofStreptococcus faecium in pasteurized ham.Fleischwirtschaft 62, 511–514 (1982); in C.M.A.P. Franz, W.H. Holzapfel, M.E. Stiles: Enterococci as crossroads of food safety?Internat.J.Food Microbiol. 47, 1–24 (1999).

    Google Scholar 

  • Hunt C.P.: The emergence of enterococci as a cause of nosocomial infection.Brit.J.Biomed.Sci. 55, 149–156 (1998).

    CAS  Google Scholar 

  • Huycke M.M., Sahm D.F., Gilmore M.S.: Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future.Emerg.Infect.Dis. 4, 239–249 (1998).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kearns A.M., Freeman R., Lightfood N.F.: Nosocomial enterococci — resistance to heat and sodium hypochlorite.J.Hosp.Infect. 30, 193–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Klein G., Pack A., Reuter G.: Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany.Appl.Environ.Microbiol. 64, 1825–1838 (1998).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Köfer J., Pless P., Fuchs K.: Implementation of a resistance monitoring programme in Styrian meat production.Fleischwirtschaft 82, 94–97 (2002).

    Google Scholar 

  • Kolař M., Vágnerova I., Látal T., Kohnová I.: Occurrence of vancomycin-resistant enterococci in relation to the administration of glycopeptide antibiotics.Acta Univ.Palacki.Olomouc. 142, 69–71 (1999).

    Google Scholar 

  • Kolář M., Bardon J., Vágnerová I., Hájek V., Bzdil J., Kohnová I., Typovská H.: Occurrence of vancomycin-resistant enterococci in hens in the central region of Moravia.Vet.Med.-Czech. 45, 93–97 (2000).

    Google Scholar 

  • Leclecq R.: Enterococci acquire new kinds of resistance.Clin.Infect.Dis. 24, 80–84 (1997).

    Article  Google Scholar 

  • Livermore D.M.: Facing antibiotic resistance.West Indian Med.J. 50, 5–7 (2001).

    CAS  PubMed  Google Scholar 

  • Mateu E., Martin M.: Why is anti-microbial resistance a veterinary problem as well?J.Vet.Med.B. 48, 569–581 (2000).

    Google Scholar 

  • McManus M.C.: Mechanisms of bacterial resistance to antimicrobial agents.Am.J.Health-Syst.Pharm. 54, 1420–1433 (1997).

    CAS  PubMed  Google Scholar 

  • Murray B.E.: The life and times of the enterococcus.Clin.Microbiol.Rev. 3, 46–65 (1990).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murray B.E.: Diversity among multidrug-resistant enterococci.Emerg.Infect.Dis. 4, 37–47 (1998).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • National Committee for Clinical Laboratory Standards (NCCLS): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved Standard M31-A. NCCLS, Wayne (USA) 1999.

  • Noble W.C., Virani Z., Cree R.G.A.: Co-transfer of vancomycin and other resistance genes fromEnterococcus faecalis NCTC 12201 toStaphylococcus aureus.FEMS Microbiol.Lett. 72, 195–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Pavia M., Nobile C.G.A., Salpietro L., Angelillo I.F.: Vancomycin resistance and antibiotic susceptibility of enterococci in raw meat.J.Food Protect. 63, 912–915 (2000).

    CAS  Google Scholar 

  • Perreten V., Teuber M.: Antibiotic resistant bacteria in fermented dairy products — a new challenge for raw milk cheese, pp. 144–148 inSymp. Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel (Germany) 1995.

  • Quednau M., Ahrne S., Petersson A.C., Molin G.: Antibiotic-resistant strains ofEnterococcus isolated from Swedish and Danish retailed chicken and pork.J.Appl.Microbiol. 84, 1163–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Rice L.B.: Emergence of vancomycin-resistant enterococci.Emerg.Infect.Dis. 7, 183–187 (2001).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samelis J., Maurogenakis F., Metaxopoulos J.: Characterization of lactic acid bacteria isolated from naturally fermented Greek dry salami.Internat.J.Food Microbiol. 23, 179–196 (1994).

    Article  CAS  Google Scholar 

  • Schlegelová J., Nápravníková E., Dendis M., Horvát R., Benedík J., Babák V., Klímová E., Navrátilová P., Šustáčková A.: Beef carcass contamination in a slaughterhouse and prevalence of resistance to antimicrobial drugs in isolates of selected microbial species.Meat Sci. 66, 557–565 (2004).

    Article  PubMed  Google Scholar 

  • Schwarz F.V., Perreten V., Teuber M.: Sequence of the 50-kb conjugative multiresistance plasmid pRE25 fromEnterococcus faecalis RE25.Plasmid 46, 170–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Simjee S., Manzoor S.E., Fraise A.P., Gill M.J.: Nature of transposon-mediated high-level gentamicin resistance inEnterococcus faecalis isolated in the United Kingdom.J.Antimicrob.Chemother. 45, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Šimůnek J., Smola J.:Antibiotics, Sulphonamides, and Quinolones in Veterinary Medicine, 1st ed. (In Czech) Last, Tišnov (Czechia) 1998.

    Google Scholar 

  • Singh K.V., Weinstock G.M., Murray B.E.:Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin.Antimicrob.Agents Chemother. 46, 1845–1850 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Son R., Nimita F., Rusul G., Nasreldin E., Samuel L., Nishibuchi M.: Isolation and molecular characterization of vancomycin-resistantEnterococcus faecium in Malaysia.Lett.Appl.Microbiol. 29, 118–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Tamashiro L.: Broth microdilution MIC testing, pp. 1–29 in H.D. Isenberg (Ed.):Clinical Microbiology Procedures Handbook. Am. Soc. Microbiol., Washington 1992a.

    Google Scholar 

  • Tamashiro L.: Preparation of broth microdilution MIC trays, pp. 1–20 in H.D. Isenberg (Ed.):Clinical Microbiology Procedures Handbook. Am. Soc. Microbiol., Washington 1992b.

    Google Scholar 

  • Teuber M., Perreten V.: Role of milk and meat products as vehicles for antibiotic-resistant bacteria.Acta Vet.Scand. 93, 75–87 (2000).

    CAS  Google Scholar 

  • Urbašková P.:Bacterial Resistance to Antibiotics — Selected Methods. (In Czech) Tries, Prague (Czechia) 1998.

    Google Scholar 

  • Van Den Bogaard A.E., Stobberingh E.E.: Epidemiology of resistance to antibiotics — links between animals and humans.Internat.J.Antimicrob.Agents 14, 327–335 (2000).

    Article  Google Scholar 

  • WHO: Specification for the identity and purity of food additives and their toxicological evaluation: some antibiotics.WHO Tech.Rep. Ser. 430 (1969).

  • Witte W.: Ecological impact of antibiotic use in animals on different complex microflora: environment.Internat.J.Antimicrob.Agents 14, 321–325 (2000).

    Article  CAS  Google Scholar 

  • Yoshimura H., Ishimaru M., Endoh Y.S., Kojima A.: Antimicrobial susceptibilities of enterococci isolated from feces of broiler and layer chickens.Lett.Appl.Microbiol. 31, 427–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zouain M.G., Araj G.F.: Antimicrobial resistance of enterococci in Lebanon.Internat.J.Antimicrob.Agents 17, 209–213 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Šustáčková.

Additional information

This work was supported by the grant QC0196 of theNational Agency for Research in Agriculture, Ministry of Agriculture of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šustáčková, A., Nápravníková, E. & Schlegelová, J. Antimicrobial resistance ofEnterococcus spp. isolates from raw beef and meat products. Folia Microbiol 49, 411–417 (2004). https://doi.org/10.1007/BF02931602

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931602

Keywords

Navigation