Skip to main content

Advertisement

Log in

Nonmammalian vertebrate antibiotic peptides

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

With the exception of cyclostomes, all vertebrates share the common immune strategy of adaptive, highly specific immunity, based on the products of recombination-activating genes and recombined noninherited receptors for antigens. In addition, they have retained ancient vectors of innate immunity, such as antimicrobial peptides, which are widespread in all eukaryotic organisms and show a high degree of structural homology across most animal taxa. Recently, these substances have become the objects of intensive study for their outstanding bioactive properties with the aim to be applied as very efficient antibiotics, antimicrobials, and even cancerostatics in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLP:

bombinin-like peptide

C3:

third component of complement

CHP:

chicken heterophil peptide

CPF:

cerulein precursor fragment

DRP-AA:

dermaseptin-related peptide fromAgalychnis annae

DRP-PD:

dermaseptin-related peptide fromPachymedusa dacnicolor

f.:

family

GAL:

gallinacins

GALT:

gut-associated lymphoid tissue

GlcNAc:

N-acetyl-d-glucosamine

GPV:

gallopavins

HFA:

hagfish antimicrobial peptide

HFIAP:

hagfish intestinal antimicrobial peptide

HIV:

human immunodeficiency virus

HLMP:

hagfish leukocyte-associated membrane protein

IκB:

inhibition factor κB

LAP:

lingual antimicrobial peptide

LCRP:

lamprey corticostatin-related peptide

MHC:

major histocompatibility complex

Myr BP:

million years before present

NF-IL6:

nuclear factor for interleukin-6

NF-κB:

nuclear factor κB

NOS:

nitric-oxide synthase

OTAP:

ovotransferrin antimicrobial peptide

PGLa:

peptide with aminoterminal glycine and carboxyterminal leucine amide

PLA2 :

phospholipases A2

RAG:

recombination-activating genes

sf.:

subfamily

syn.:

synonymum

TAP:

bovine tracheal antimicrobial peptide

TCR:

T cell recptor

THP:

turkey heterophil peptide

vPLA2 :

venom phospholipases A2

XPF:

xenopsin precursor fragment

XT:

Xenopus tropicalis antimicrobial peptide

References

  • Aboudy Y., Mendelson E., Shalit I., Bessale R., Fridkin M.: Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2.Internat.J.Pept.Prot.Res.43, 573–582 (1994).

    CAS  Google Scholar 

  • Ali M.F., Soto A., Knoop F.C., Conlon J.M.: Antimicrobial peptides isolated from skin secretions of the diploid frog,Xenopus tropicalis (Pipidae).Biochim.Biophys.Acta1550, 81–89 (2001).

    PubMed  CAS  Google Scholar 

  • Amiche M., Ducancel F., Mor A., Boulain J.C., Menez A., Nicolas P.: Precursors of vertebrate peptide antibiotics dermaseptinb and adenoregulin have extensive sequence identities with precursors of opioid peptides dermophin, dermenkefalin, and deltorphins.J.Biol.Chem.269, 17847–17852 (1994).

    PubMed  CAS  Google Scholar 

  • Amiche M., Seon A.A., Pierre T.N., Nicolas P.: The dermaseptin precursors: a protein family with a common preproregion and a variable C-terminal antimicrobial domain.FEBS Lett.456, 352–356 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Amiche M., Seon A.A., Wroblewski H., Nicolas P.: Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family.Eur.J.Biochem.267, 4583–4592 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Andersson E., Matsunaga T.: Jaw, adaptive immunity and phylogeny of vertebrate antibody VH gene family.Res.Immunol.147, 233–240 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Andreu L.R., Rivas L.: Animal antimicrobial peptides: an overview.Biopolymers47, 415–433 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Araki T., Yamamoto T., Torikata T.: Reptile lysozyme: the complete amino acid sequence of soft-shelled turtle lysozyme and its activity.Biosci.Biotechnol.Biochem.62, 316–324 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ardavin C.F., Zapata A.: Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lampreyPetromyzon marinus.Develop.Comp.Immunol.11, 79–93 (1987).

    Article  CAS  Google Scholar 

  • Ardavin C.F., Zapata A.: Lymphoid components in the branchial cavernous body of the ammocoete ofPetromyzon marinus.Acta Zool.69, 23–28 (1988).

    Article  Google Scholar 

  • Baker M.A., Maloy W.I., Zasloff M., Jacob L.S.: Anticancer efficacy of magainin 2 and analogue peptides.Cancer Res.53, 3052–3057 (1993).

    PubMed  CAS  Google Scholar 

  • Barra D., Simmaco M.: Amphibian skin: a promising resource for antimicrobial peptides.Trends Biotechnol.13, 205–209 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Barti S.: What sharks can tell us about the evolution of MHC genes.Immunol.Rev.166, 317–331 (1998).

    Article  Google Scholar 

  • Basañez G., Shinnar A.E., Zimmerberg J.: Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes.FEBS Lett.532, 115–120 (2002).

    Article  PubMed  Google Scholar 

  • Basir Y.J., Knoop F.C., Dulka J., Conlon J.M.: Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog.Rana palustris. Biochim.Biophys.Acta1543, 95–105 (2000).

    CAS  Google Scholar 

  • Batista C.V., Scaloni A., Rigden D.J., Silva L.R., Rodrigues Romero A., Dukor R., Sebben A., Talamo F., Bloch C.: A novel heterodimeric antimicrobial peptide from the tree-frogPhyllomedusa distincta.FEBS Lett.494, 85–89 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Belcourt D.R., Lazure C., Bennett H.P.J.: Isolation and primary structure if the three major forms of granulin-like peptides from hematopoietic tissues of a teleost fish (Cyprinus carpio).J.Biol.Chem.13, 9230–9237 (1993).

    Google Scholar 

  • Bengten E., Wilson M., Miller N., Clem L.W., Pilstrom L., War G.W.: Immunoglobulin isotypes: structure and function.Curr.Topics Microbiol.Immunol.248, 189–219 (2000).

    CAS  Google Scholar 

  • Bevins C.L., Zasloff M.: Peptides from frog skin.Ann.Rev.Biochem.59, 395–414 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Boman H.G.: Peptide antibioties and their role in innate immunity.Ann.Rev.Immunol.13, 61–92 (1995).

    Article  CAS  Google Scholar 

  • Borkow G., Chaim-Matyas A., Ovadia M.: Binding of cytotoxin P4 fromNaja nigricollis nigricollis to B16F10 melanoma and WEHI-3B leukemia cells.FEMS Microbiol.Immunol.5, 139–145 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Bowie J.H., Wegener K.L., Chia B.C.S., Wabnitz P.A., Carver J.A., Tyler M.J., Wallace J.C.: Host defence antibacterial peptides from skin secretions of Australian amphibians. The relationship between structure and activity.Prot.Peptide.Lett.6, 259–269 (1999).

    CAS  Google Scholar 

  • Bradford A.M., Bowie J.H., Tyler M.J., Wallace J.C.: New antibiotic peptides from the dorsal glands of the Australian toadletUperoleia mjobergii.Aust.J.Chem.49, 1325–1331 (1996).

    Article  CAS  Google Scholar 

  • Brockus C.W., Jackwood M.W., Harmon B.G.: Characterization of β-defensin prepropeptide mRNA from chicken and turkey bone marrow.Anim.Genet.29, 283–289 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Broekaert W.F., Cammue B.P.A., Deballe U.T.C., Thevissen K., Desamblanx G.W., Osborn R.W.: Antimicrobial peptides from plants.Crit.Rev.Plant Sci.16, 297–323 (1997).

    Article  CAS  Google Scholar 

  • Brune K., Spitznagel K.: Peroxidaseless chicken leukocytes: isolation and characterization of antibacterial granules.J.Infect.Dis.127, 84–94 (1973).

    PubMed  CAS  Google Scholar 

  • Carroll R.L.:Vertebrate Paleontology and Evolution. W.H. Freedman, New York 1988.

    Google Scholar 

  • Carroll R.L.:Paläontologie und Evolution der Wirbeltiere. Georg Thieme Verlag, Stuttgart (Germany) 1993.

    Google Scholar 

  • Chaim-Matyas A., Borkow G., Ovadia M.: Isolation and characterization of a cytotoxin P4 from the venom ofNaja nigricollis nigricollis preferentially active on tumor cells.Biochem Internat.24, 415–421 (1991).

    CAS  Google Scholar 

  • Charlemagne J., Tournefier A.: Immunology of amphibians, pp. 63–72 in P.P. Pastoret, P. Griebel, H. Bazin, A. Govaerts (Eds):Handbook of Vertebrate Immunology. Academic Press, San Diego (USA) 1998.

    Google Scholar 

  • Charon N.W., Johnson R.C., Muschel L.H.: Antileptospiral activity in lower vertebrate sera.Infect.Immun.12, 1386–1391 (1975).

    PubMed  CAS  Google Scholar 

  • Chia B.C.S., Carver J.A., Mulhern T.D., Bowie J.H.: Maculatin I. 1. An antimicrobial peptide from the Australian tree frogLitoria genimaculata; solution structure and biological activity.Eur.J.Biochem.267, 1894–1908 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Cho J.H., Park I.Y., Kim M.S., Kim S.C.: Matrix metalloproteinase 2 is involved in the regulation of the antimicrobial peptide parasin I production in catfish skin mucosa.FEBS Lett.531, 459–463 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Clark D.P., Durell S., Maloy W.L., Zasloff M.: Ranalexin — a novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin — structurally related to the bacterial antibiotic, polymyxin.J.Biol.Chem.269, 10849–10855 (1994).

    PubMed  CAS  Google Scholar 

  • Cogger H.G., Zweifel R.G.:Reptiles and Amphibians. Smithmark Publishing, New York 1992.

    Google Scholar 

  • Cole A.M., Weis P., Diamond G.: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder.J.Biol.Chem.272, 12008–12013 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Conlon J.M., Halverson T., Dulka J., Platz J.E., Knoop F.C.: Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the Southern leopard frog,Rana sphenocephala. J. Peptide Res.54, 522–527 (1999).

    CAS  Google Scholar 

  • Conton J.M., Sower S.A.: Isolation of a peptide structurally related to mammalian corticostatins from the lampreyPetromyzon marinus.Comp.Biochem.Physiol.B Biochem.Mol.Biol.114, 133–137 (1996).

    Article  Google Scholar 

  • Csordas A., Michl H.: Primary structure of two oligopeptides of the toxin ofBombina variegata L.Toxicon7, 103–108 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Cupit P.M., Hansen J.D., White G., Chioda C., Spada F., Cunningham C.: An Ikaros family member in the agnathanMyxine glutionosa and the urochordateOikopleura dioica, p. 47 in9th Internat. Congr. International Society for Developmental and Comparative Immunology, St.Andrews (UK) 2003.

  • Curtis S.K., Cowden R.R., Nagel J.W.: Ultrastructure of the bone marrow of the salamanderPlethodon glutionosus (Caudata: Plethodontidae).J.Morphol.159, 151–184 (1979).

    Article  Google Scholar 

  • De Bary A.H.:Die Erscheinung der Symbiose. Naturforschung Versammlumgen, Cassel (Germany) 1869.

    Google Scholar 

  • Dos Remedios N.J., Ramsland P.A., Hook J.W., Raison R.L.: Identification of a homologue of CD59 in a cyclostome: implications for the evolutionary development of the complement system.Dev.Comp.Immunol.23, 1–14 (1999).

    Article  PubMed  Google Scholar 

  • Douglas S.E., Gallant J.W., Gong Z., Hew C.: Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder,Pleuronectes americanus (Walbaum).Develop.Comp.Immunol.25, 137–147 (2001).

    Article  CAS  Google Scholar 

  • Douglas S.E., Gallant J.W., Liebscher R.S., Dacanay A., Tsoi S.C.: Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish.Develop.Comp.Immunol.27, 589–601 (2003).

    Article  CAS  Google Scholar 

  • Doyle J., Llewellyn L.E., Brinkworth C.S., Bowie J.H., Wegener K.L., Rozek T., Wabnitz P.A., Wallace J.C., Tyler M.J.: Amphibian peptides that inhibit neuronal nitric oxide synthase: the isolation of lesueurin from the skin secretion of the Australian stony creek frogLitoria lesueuri.Eur.J.Biochem.269, 100–109 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Doyle J., Brinkworth C.S., Wegener K.L., Carver J.A., Llewellyn L.E., Olver I.N., Bowie J.H., Wabnitz P.A., Tyler M.J.: nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1.Eur.J.Biochem.270, 1141–1153 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Du Pasquier L., Schwager J., Flajnik M.F.: The immune system ofXenopus.Ann.Rev.Immunol.7, 251–275 (1989).

    Article  Google Scholar 

  • Du Pasquier L.: Evolution of the immune system, pp. 605–650 in W.E. Paul (Ed.):Fundamental Immunology. Lappincott-Raven Publishers, Philadelphia (USA) 1993.

    Google Scholar 

  • Du Pasquier L.: The phylogenetic origin of antigen-specific receptors.Curr.Topics Microbiol.Immunol.248, 160–185 (2000).

    Google Scholar 

  • Duda T.F. Jr.,Vanhoye D., Nicolas P.: Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides.Mol.Biol.Evolut.19, 858–864 (2002).

    CAS  Google Scholar 

  • Duellman W.F., Trueb L.:Biology of Amphibians. McGraw-Hill, New York 1986.

    Google Scholar 

  • Ebran N., Julien S., Orange N., Auperin B., Molle G.: Isolation and characterization of novel glycoproteins from fish epidermal mucus: correlation between their pore-forming properties and their antibacterial activities.Biochim.Biophys.Acta Biomembranes1467, 271–280 (2000).

    Article  CAS  Google Scholar 

  • Ellis A.E.: Non-specific defense mechanisms in fish and their role in disease processes.Develop.Biol.Standard.49, 337–352 (1981).

    Google Scholar 

  • Ellis A.E.: Immunity to bacteria in fish.Fish Shellfish Immunol.9, 291–308 (1999).

    Article  Google Scholar 

  • Ellis A.E.: Innate host defense mechanisms of fish against viruses and bacteria.Develop.Comp.Immunol.25, 827–839 (2001).

    Article  CAS  Google Scholar 

  • Elsbach P.: What is a real role of antimicrobial polypeptides that can mediate several inflammatory responses?J.Clin.Invest.111, 1643–1645 (2003).

    PubMed  CAS  Google Scholar 

  • Evans E.W., Beach G.G., Wunderlich J., Harmon B.G.: Isolation of antimicrobial peptides from avian heterophils.J.Leukocyt.Biol.56, 661–665 (1994).

    CAS  Google Scholar 

  • Fange R., Zapata A.G.: Lymphohemopoietic system and bodily defenses of hagfish, pp. 59–76 in R.A. Good (Ed.):Ontogeny and Phylogeny of the Immune System. The Iwanami Immunology Series. Iwanami Shoten Publishers, Tokyo 1984.

    Google Scholar 

  • Fellermann K., Stange E.F.: Defensins — innate immunity at the epithelial frontier.Eur.J.Gastroenterol.Hepatol.13, 771–776 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Fernandes J.M.O., Smith V.J.: A novel antimicrobial function for a ribosomal peptide from rainbow trout skin.Biochem.Biophys.Res.Commun.226, 167–171 (2002).

    Article  CAS  Google Scholar 

  • Flajnik M.F.: Comparative analyses of immunoglobulin genes: surprises and portents.Nature Rev.2, 688–698 (2002).

    Article  CAS  Google Scholar 

  • Fleming A.: On a remarkable bacteriolytic element found in tissues and secretions.Proc.Roy.Soc.LondonB93, 306–317 (1922).

    Google Scholar 

  • Fletcher T.C.: Non-specific defense mechanism of fish.Develop.Comp.Immunol. Suppl. 2, 123–132 (1982).

    Google Scholar 

  • Fleury Y., Vouille V., Beven L., Amiche M., Wroblewski H., Delfour A., Nicolas P.: Synthesis, antimicrobial activity and gene structure of a novel member of dermaseptin B family.Biochim.Biophys.Acta1396, 228–236 (1998).

    PubMed  CAS  Google Scholar 

  • Fock W.L., Chen C.L., Lam T.J., Sin Y.M.: Roles of an endogenous serum lectin in the immune protection of blue gourami,Trichogaster trichopterus (Pallus) againstAeromonas hydrophila.Fish Shellfish Immunol.11, 101–113 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Forey P., Janvier P.: Agnathans and the origin of jawed vertebrates.Nature361, 129–134 (1993).

    Article  Google Scholar 

  • Fredericks L.P., Dankert S.R.: Antibacterial and hemolytic activity of the skin of terrestrial salamander,Plethodon cinereus.J.Exp.Zool.287, 340–345 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T.: Angiogenin: an antimicrobial ribonuclease.Nature Immunol.4, 213–214 (2003).

    Article  CAS  Google Scholar 

  • Getchell M.L., Getchell T.V.: Immunohistochemical localization of components of the immune barrier in the olfactory mucosae of salamanders and rats.Anat.Rec.231, 358–374 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Gibson B.W., Poulter L., Williams D.H., Maggio J.E.: Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors fromXenopus laevis.J.Biol.Chem.261, 5341–5349 (1986).

    PubMed  CAS  Google Scholar 

  • Gibson B.W., Tang D.Z., Mandrell R., Kelly M., Spindel E.R.: Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad,Bombina orientalis.J.Biol.Chem.266, 23103–23111 (1991).

    PubMed  CAS  Google Scholar 

  • Gilbertson P., Wotherspoon J., Raison R.L.: Evolutionary development of lymphocyte heterogeneity: leucocyte subpopulations in the Pacific hagfish.Develop.Comp.Immunol.10, 1–10 (1986).

    Article  CAS  Google Scholar 

  • Gille G., Sigler K.: Oxidative stress and living cells.Folia Microbiol.40, 131–152 (1995).

    Article  CAS  Google Scholar 

  • Glaw F., Köhler J.: Amphibian species diversity exceeds that of mammals, pp. 79–80 in Z. Roček, S. Hart (Eds),Herpetology ’97, 3rd World Congr. Herpetology, Prague 1997.

  • Glick B.: RES Structure and function of the aves, pp. 509–540 in N. Cohen, M.M. Sigel (Eds):The Reticuloendothelial System, Vol. 3. Plenum Press, New York 1983.

    Google Scholar 

  • Goldman M.J., Anderson G.M., Stolzenberg E.D., Kari U.P., Zasloff M., Wilson J.M.: β-1-defensin is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis.Cell88, 553–560 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Goraya J., Knoop F.C., Conton J.M.: Ranaruerins: antimicrobial peptides isolated from the skin of the American bullfrog,Rana catesbeiana.Biochem.Biophys.Res.Commun.250, 589–592 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Goraya J., Wang Y., Li Z., O’Flaherty M., Knoop F.C., Platz J.E., Conlon J.M.: Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogsRana luteiventris, Rana berladieri andRana pipiens.Eur.J.Biochem.267, 894–900 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Habermann E.: Bee and wasp venoms.Science177, 314–322 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Habermann E. Breithaupt H.: The crotoxin complex — an example of biochemical and pharmacological protein complementation.Toxicon16, 19–30 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Hancock R.E.W., Chapple D.S.: Peptide antibiotics.Antimicrob.Agents Chemother43, 1317–1323 (1999).

    PubMed  CAS  Google Scholar 

  • Hanley P.J., Hook J.W., Raftos D.A., Gooley A.A., Trent R., Raison R.I.: Hagfish humoral defense protein exhibits structural and functional homology with mammalian complements.Proc.Nat.Acad.Sci.USA89, 7910–7914 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Hansen J.D., McBlane J.F.: Recombination-activation genes, transposition, and the lymphoid-specific combinatorial immune system: a common evolutionary connection.Curr.Topics Microbiol.Immunol.248, 111–135 (2000).

    CAS  Google Scholar 

  • Harmon B.G.: Avian heterophils in inflammation and disease resistance.Poultry Sci.77, 972–977 (1998).

    CAS  Google Scholar 

  • Harwig S.S., Swiderek K.M., Kokryakov V.N., Tan L., Lee T.D., Panyutich E.A., Aleshina G.M., Shamova O.V., Lehrer R.I.: Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes.FEBS Lett.342, 281–285 (1994).

    Article  PubMed  CAS  Google Scholar 

  • He H., Farnell M.B., Kogut M.H.: Inflammatory agonist stimulation and signal pathway of oxidative burst in neonatal chicken heterophilsComp.Biochem.Physiol A Mol.Integr Physiol.135, 177–184 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Helfman G.S., Collette B.B., Facey D.E.:The Diversity of Fishes. Blackwell Science, Toronto 1997.

    Google Scholar 

  • Hinds N.A., Smith S.L.: Antibacterial activity associated with histone fragments present in shark leucocyte lysates, p. 68 in9th Internat. Congr. International Society for Developmental and Comparative Immunology, St.Andrews (UK) 2003.

  • Hoffmann J.A., Kafatos F.C., Janeway C.A., Ezekowitz R.A.: Phylogenetic perspectives in innate immunity.Science284, 1313–1318 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hsu E., Flajnik M.F., Du Pasquier L.: A third immunoglobulin class in amphibians.J.Immunol.135, 1998–2004 (1985).

    PubMed  CAS  Google Scholar 

  • Hughes A.L., Yeager M.: Molecular evolution of the vertebrate immune system.Bioassays19, 777–786 (1997).

    Article  CAS  Google Scholar 

  • Hultmark D., Steiner H., Rasmusson T., Boman H.G.: Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupas ofHyalophora cecropia.Eur.J.Biochem.106, 7–16 (1980).

    PubMed  CAS  Google Scholar 

  • Hwang E.Y., Seo J.K., Kim C.H., Go H.J., Kim E.J., Chung J.K., Ryu H.S., Park N.G.: Purification and characterization of a novel antimicrobial peptide from the skin of the hagfishEptatretus burgeri.J.Food Sci.Nutr.4, 28–32 (1999).

    CAS  Google Scholar 

  • Ibrahim H.R., Sugimoto Y., Aoki T.: Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism.Biochim.Biophys.Acta1523, 196–205 (2000).

    PubMed  CAS  Google Scholar 

  • Iijima N., Tanimoto N., Emoto Y., Morita Y., Uematsu K., Murakami T., Nakai T.: Purification and characterization of three isoforms of chrysophsin: a novel antimicrobial peptide in the gills of the Red Sea bream,Chrysophrys major. Eur.J.Biochem.270, 675–686 (2003).

    CAS  Google Scholar 

  • Irwin D.M., Gong Z.M.: Molecular evolution of vertebrate goose-type lysozyme genes.J.Mol.Evol.56, 234–242 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T., Soto A.M., Iwanuro S., Knoop F.C., Conlon J.M.: Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frogRana japonica.Peptides23, 419–425 (2000).

    Article  Google Scholar 

  • Ishiguro A., Kobayashi K., Suzuki M., Titani K., Tomonaga S., Kukosawa Y.: Isolation of a hagfish gene that encodes a complement component.EMBO J.11, 829–837 (1992).

    PubMed  CAS  Google Scholar 

  • Jacob L., Zasloff M.: Potential therapeutic applications of magainins and other antimicrobial agents of animal origin.CIBA Found. Symp.186, 197–216 (1994).

    PubMed  CAS  Google Scholar 

  • Janvier P.: The phylogeny of the craniata with particular reference to the significance of fossil “agnathans”.J.Vert.Paleontol.1, 121–159 (1981).

    Google Scholar 

  • Jia X., Patrzykat A., Devlin R.H., Ackerman P.A., Iwama G.K., Hancock R.E.W.: Antimicrobial peptides protect coho salmon fromVibrio anguillarum infections.Appl.Environ.Microbiol.66, 1928–1932 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Jones S.R., Kinney W.A., Zhang X.H., Jones L.M., Selinsky B.S.: The synthesis and characterization of analogs of the antimicrobial compound squalamine: 6β-hydroxy-3-aminosterols synthesized from hyodeoxycholic acid.Steroids61, 565–571 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kaattari S., Evans D., Klemer J.: Varied redox forms of teleost IgM: an alternative isotypic diversity?Immunol.Rev.166, 133–142 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Khabnadideh S., Tan C.L., Croft S.L., Kendrick H., Yardley V., Gilbert I.H.: Squalamine analogues as potential anti-trypanosomal and anti-leishmanial compounds.Bioorgan.Med.Chem.Lett.10, 1237–1239 (2000).

    Article  CAS  Google Scholar 

  • Kikuchi K., Bernard E.M., Sadownik A., Regen S.L., Armstrong D.: Antimicrobial activities of squalamine mimics.Antimicrob. Agents Chemother.41, 1433–1438 (1997).

    PubMed  CAS  Google Scholar 

  • Kim H.S., Choi B.S., Kwon K.C., Lee S.O., Kwak H.J., Lee C.H.: Synthesis and antimicrobial activity of squalamine analogue.Bioorgan.Med.Chem.8, 2059–2065 (2000).

    Article  CAS  Google Scholar 

  • Kim J.B., Iwamuro S., Knoop F.C., Conlon J.M.: Antimicrobial peptides from the skin of the Japanese mountain brown frog,Rana ornativentris.J.Pept.Res.58, 349–356 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kini R.M.: Phospholipase A2 — a complex multifunctional protein puzzle, pp. 1–28 in R.M. Kini (Ed.):Venom Phospholipase A2Enzymes: Structure. Function and Mechanism. John Wiley & Sons, Chichester (UK) 1997.

    Google Scholar 

  • Kiss G., Michl H.: On the venomous skin secretions of the orange speckled frogBombina variegata.Toxicon1, 33–39 (1962).

    Article  Google Scholar 

  • Klein J.: Are invertebrates capable of anticipatory immune responses?Scand.J.Immunol.29, 499–505 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Klein J.: Homology between immune responses in vertebrates and invertebrates: does it exist?Scand.J.Immunol.46, 558–564 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Koczulla A.R., Bals R.: Antimicrobial peptides: current status and therapeutic potential.Drugs63, 389–406 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M., Brines R., Kaufman J.: MHC evolution: a long term investment in defense.Immunol.Today15, 4–6 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kuchler K., Kreil G., Sures I.: The genes for the frog skin peptides GLa, xenopsin, levitide and caerulein contain a homologous export exon encoding a signal sequence and part of an amphiphilic peptide.Eur.J.Biochem.179, 281–285 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Lai R., Zheng Y.T., Shen J.H., Liu G.J., Liu H., Lee W.H., Tang S.Z., Zhang Y.: Antimicrobial peptides from skin secretions of Chinese red belly toadBombina maxima, Peptides23, 427–435 (2002a).

    Article  PubMed  CAS  Google Scholar 

  • Lai R., Liu H., Lee W.H., Zhang Y.: An anionic antimicrobial peptide from toadBombina maxima.Biochem.Biophys.Res.Commun.295, 796–799 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Lauth X., Shike H., Burns J.C., Westerman M.E., Ostland V.E., Carlberg J.M., Van Olst J.C., Nizet V., Tylor S.W., Shimizu C., Bulet P.: Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass.J.Biol.Chem.277, 5030–5039 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lazarus L.H., Bryant S.D., Attila M., Salvador S.: Frog skin opioid peptides: a case for environmental mimicry.Environ.Health Perspect.102, 648–654 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre C., Orange N., Saglioi P., Saint N., Gagnon J., Molle G.: Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio).Eur.J.Biochem.240, 143–149 (1996).

    Article  Google Scholar 

  • Lee S.S., Fitch D., Flajnik M.F., Hsu E.: Rearrangement of immunoglobulin genes in shark germ cells.J.Exp.Med.191, 1637–1648 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lehrer R.I., Hanifin J., Cline M.J.: Defective bacterial activity in myeloperoxidase-deficient human neutrophils.Nature223, 78–79 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Levy O.: Therapeutic potential of the bactericidal/permeability-increasing protein.Expert Opin.Investig.Drugs.11, 159–167 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Litman G.W., Anderson M.K., Rast J.P.: Evolution of antigen-binding receptors.Ann.Rev.Immunol.17, 109–147 (1999).

    Article  CAS  Google Scholar 

  • Løvtrup S.:The Phylogeny of Vertebrata. John Wiley and Sons, New York 1977.

    Google Scholar 

  • Macrae E.K., Spitznagel J.K.: Ultrastructural localization of cationic proteins in cytoplasmic granules of chicken and rabbit polymorphonuclear leucocytes.J.Cell.Sci.17, 79–94 (1975).

    PubMed  CAS  Google Scholar 

  • Marchalonis J.J., Schluter S.F., Bernstein R.M., Hohman V.S.: Antibodies of sharks: revolution and evolution.Immunol.Rev.166, 103–122 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T., Andersson E.: Evolution of vertebrate antibody genes.Fish Shellfish Immunol.4, 419–423 (1994).

    Article  Google Scholar 

  • Matsushita M., Matsushita A., Endo Y., Nakata M., Kojima N., Fujita T.: C1q homologue in lamprey, p. 80 in9th Internat. Congr. International Society for Developmental and Comparative Immunology, St.Andrews (UK) 2003.

  • Matsuzaki K.: Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes.Biochim.Biophys.Acta1462, 1–10 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Maxwell M.H., Robertson G.W.: The avian heterophil leucocyte: a review.World’s Poultry Sci.J.54, 155–178 (1998).

    Article  Google Scholar 

  • McConnel T.J.:Godwin U.B., Cuthberson B.J.: Expressed major histocompatibility complex class II loci in fishes.Immunol.Rev.166, 294–300 (1998).

    Article  Google Scholar 

  • Miele R., Ponti D., Boman H.G., Barra D., Simmaco M.: Molecular cloning of a bombinin gene fromBombina orientalis: detection of NF-κB and NF-IL6 binding sites in its promoter.FEBS Lett.431, 23–28 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Miele R., Borro M., Fiocco D., Barra D., Simmaco M.: Sequence of a gene fromBombina orientalis coding for antimicrobial peptide BLP.Peptides21, 1681–1686 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Mollmann U., Gutsche W., Maltz L., Ovadia M.: Activity of cytotoxin P4 from the venom of the cobra snakeNaja nigricollis on Gram-positive bacteria and eukaryotic cell lines.Arzneimittelforschung47, 671–673 (1997).

    PubMed  CAS  Google Scholar 

  • Monks A., Schudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A.: Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.J.Nat.Cancer Inst.83, 757–766 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Montali R.J.: Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals).J.Comp.Pathol.99, 1–20 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Moore K.S., Wehrli S., Roder H., Rogers M., Forrest J.N. Jr.,Mc Crimmon D., Zasloff M.: Squalamine: an aminosterol antibiotic from the shark.Proc.Nat.Acad.Sci.USA90, 1354–1358 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Mor A., Nicolas P.: Isolation and structure of novel defensive peptides from frog skin.Eur.J.Biochem.219, 145–154 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Mor A., Nguyen V.H., Delfour A., Migliore-Samour D., Nicolas P.: Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin.Biochemistry30, 8824–8830 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Morikawa N., Hagiwara K., Nakajima T.: Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog,Rana brevipoda porsa.Biochem.Biophys.Res.Commun.189, 184–189 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Muthukkaruppan V., Borysenko M., El Ridi R.: RES structure and function of theReptilia, pp. 461–508 in N. Cohen, M.M. Sigel (Eds):The Reticuloendothelial System, Vol. 3. Plenum Press, New York 1983.

    Google Scholar 

  • Nelson G.J.: Origin and diversification of teleostean fishes.Ann.N.Y.Acad.Sci.167, 18–30 (1969).

    Article  Google Scholar 

  • Nelson G.J.:Fishes of the World. John Wiley & Sons, New York 1984.

    Google Scholar 

  • Neumann N.F., Stafford J.L., Barreda D., Ainsworth A.J., Belosevic M.: Antimicrobial mechanisms of fish phagocytes and their role in host defence.Develop.Comp.Immunol.25, 807–825 (2001).

    Article  CAS  Google Scholar 

  • Nicolas P., Mor A.: Peptides as weapons against microorganisms in the chemical defense system of vertebrates.Ann.Rev.Microbiol.49, 277–304 (1995).

    Article  CAS  Google Scholar 

  • Nonaka M.: Evolution of the complement system.Curr.Opin.Immunol.13, 69–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Olson L. III,Soto A.M., Knoop F.C., Conlon J.M.: Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog.Biochem.Biophys.Res.Commun.288, 1001–1005 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Oren Z., Shai Y.: A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fishPardachirus marmoratus.Eur.J.Biochem.237, 303–310 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Orgel L.E.:The Origins of Life. Molecules and Natural Selection. Chapman and Hall, London 1973.

    Google Scholar 

  • Ota T., Sitnikova T., Nei M.: Evolution of vertebrate immunoglobulin variable gene segments.Curr.Topics Microbiol.Immunol.248, 221–245 (2000).

    CAS  Google Scholar 

  • Padian K., Chiappe L.M.: The origin and early evolution of birds.Biol.Rev.Cambridge Philosoph.Soc.73, 1–42 (1998).

    Article  Google Scholar 

  • Pancer Z., Mayer W., Klein J., Cooper M.: A lymphocentric search for the roots of adaptive immunity in lamprey, p. 33 in9th Internat. Congr. International Society for Developmental and Comparative Immunology, St. Andrews (UK) 2003.

  • Paramo L., Lomonte B., Pizarro-Cerdá J., Bengoechea J.A., Gorvel J.P.L., Moreno E.: Bactericidal activity of Lys49 and Asp-49 myotoxic phospholipases A2 fromBothrops asper snake venom. Synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region.Eur.J.Biochem.253, 452–461 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Park C.B., Lee J.H., Kim M.S., Kim S.C.: A novel antimicrobial peptide from the loachMisgurnus anguillicandatus.FEBS Lett.411, 173–178 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Park C.H., Valore E.V., Waring A.J., Ganz T.: Hepcidin, a urinary antimicrobial peptide synthesized in the liver.J.Biol.Chem.276, 7806–7810 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Park J.M., Jung J.E., Lee B.J.: Antimicrobial peptides from the skin of a Korean frog,Rana rugosa.Biochem.Biophys.Res.Commun.205, 948–952 (1994)

    Article  PubMed  CAS  Google Scholar 

  • Park J.Y., Park C.B., Kim M.S., Kim S.C.: Parasin I, an antimicrobial peptide derived from histone H2A in the catfishParasilurus asotus.FEBS Lett.437, 258–262 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Park S., Park S.H., Ahn H.C., Kim S., Kim S.S., Lee B.J.: Structural study of novel antimicrobial peptides, nigrocins, isolated fromRana nigromaculata.FEBS Lett.507, 95–100 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pierre T.N., Seon A.A., Amiche M., Nicolas O.: Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial opioid peptide precursors.Eur.J.Biochem.267, 370–378 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Raison R.L., Dos Remedios N.J.: The biology of hagfishes, pp. 334–344 in J.M. Jorgensen, J.P. Lomholt, R.E. Weber, H. Malte (Eds). Chapman and Hall, London 1998.

    Google Scholar 

  • Raison R.L., Coverley J., Hook J.W., Towns P., Weston L.M., Raftos D.A.: A cell-surface opsonic receptor on leucocytes from phylogenetically primitive vertebrate,Eptatretus stoutii.Immunol.Cell Biol.72, 326–332 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi A.C.: Antimicrobial peptides from amphibian skin: an expanding scenario.Curr.Opin.Chem.Biol.6, 799–804 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Roseghini R., Falconieri-Erspamer G., Severini C., Simmaco M.: Biogenic amines and active peptides in extracts of the skin of thirty-two European amphibian species.Comp.Biochem.Physiol.94C, 455–460 (1989).

    CAS  Google Scholar 

  • Rozek T., Wegener K.L., Bowie J.H., Olver I.N., Carver J.A., Wallace J.C., Tyler M.J.: The antibiotic and anticancer active aurein peptides from the Australian bell frogsLitoria aurea andLitoria raniformis. The solution structure of aurein 1.2.Eur.J.Biochem.267, 5330–5341 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sai P.S., Jagannadham V.J., Vairamani M., Raju N.P., Devi A.A., Nagaraj R., Sitaram N.: Tigerinins: novel antimicrobial peptides from the Indian frogRana tigerina.J.Biol.Chem.276, 2701–2707 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Savage P.B., Li C., Taotafa U., Ding B., Guan Q.: Antibacterial properties of cationic steroid peptides.FEMS Microbiol.Lett.217, 1–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Schlake T., Schorpp M., Nehls M., Bochm T.: The nude gene encodes a sequence-specific DNA binding protein with homologs in organisms that lack an anticipatory immune system.Proc.Nat.Acad.Sci.USA94, 3842–3847 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Schluter S.F., Bernstein R.M., Marchalonis J.J.: Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates.Immunol.Today18, 543–549 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Schroder J.-M.: Epithelial peptide antibiotics.Biochem.Pharmacol.57, 121–134 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Scocchi M., Wang S., Zanetti M.: Structural organization of the bovine cathelicidin gene family and identification of a novel member.FEBS Lett.417, 311–315 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Severini C., Improta G., Falconieri-Erspamer G., Salvadori S., Erspamer V.: The tachykinin peptide family.Pharmacol.Rev.54, 285–322 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sharma J.M.: Avian immunology, pp. 73–136 in P.-P. Pastoret, P. Griebel, H. Bazin, A. Govaerts (Eds):Handbook of Vertebrate Immunology. Academic Press, San Diego (USA) 1998.

    Google Scholar 

  • Shike H., Lauth N., Westerman M.E., Ostland V.E., Carlberg J.M., Van Olst J.C., Shimizu C., Bulet P., Burns J.C.: Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge.Eur.J.Biochem.269, 2232–2237 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Silfhaduang U., Noga E.J.: Peptide antibiotics in mast cells of fish.Nature414, 268–269 (2001).

    Article  Google Scholar 

  • Simmaco M., Barra D., Chiarini F., Novielio L., Melchiori P., Kreil G., Richter K.: A family of bombinin-related peptides from the skin ofBombina variegata.Eur.J.Biochem.199, 217–222 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Simmaco M., Mignona G., Barra D., Bossa F.: Novel antimicrobial peptides from skin secretion of the European frogRana esculenta.FEBS Lett.324, 159–161 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Simmaco M., Mignogna G., Canofeni S., Miele R., Mangoni M.L., Barra D.: Temporins, antimicrobial peptides from the European red frogRana temporaria.Eur.J.Biochem.242, 788–792 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Simmaco M., Mignona G., Barra D.: Antibiotic peptides from amphibian skin: what do they tell us?Biopolymers47, 435–450 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Smith V.J., Fernandes J.M., Jones S.J., Kemp G.D., Tatner M.F.: Antibacterial proteins in rainbow trout,Oncorhynchus mykiss.Fish Shellfish Immunol.10, 243–260 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Soravia E., Martini G., Zasloff M.: Antimicrobial properties of peptides fromXenopus granular gland secretions.FEBS Lett.228, 337–340 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Steinborner S.T., Curie G.J., Bowie J.H., Wallace J.C., Tyler M.J.: New antibiotic caerin 1 peptides from the skin of the Australian tree frogLitoria chloris. Comparison of the activities of the caerin I peptides from the genusLitoria.J.Peptide Res.51, 121–126 (1998).

    CAS  Google Scholar 

  • Stössel I.: The discovery of a new Devonian tetrapod trackway in SW Ireland.Geol.Soc.London152, 407–413 (1995).

    Article  Google Scholar 

  • Suzuki S., Olic Y., Okubo T., Kakegawa T., Tatemoto K.: Isolation and characterization of novel antimicrobial peptides, rugosins A, B and C, from the skin of the frog,Rana rugosa.Biochem.Biophys.Res.Commun.212, 249–254 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Šíma P., Rossmann P.: Proliferation of lymphoid cells and immunity inAmphibia.Develop.Comp.Immunol.7, 715–716 (1983).

    Article  Google Scholar 

  • Šíma P., Slípka J.: The spleen and its coelomic and enteric history, pp. 331–334 in J. Mestecky, M.W. Russel, S. Jackson, S.M. Michalek, H. Tlaskalová-Hogenová, J. Šterzl (Eds):Advances in Mucosal Immunology. Vol. 371A. Plenum Press, New York 1995

    Google Scholar 

  • Šíma P., Větvička V.:Evolution of Immune Reactions. CRC Press, Boca Raton (USA) 1990.

    Google Scholar 

  • Šíma P., Trebichavsky I., Sigler K.: Mammalian antibiotic peptides.Folia Microbiol.48, 123–137 (2003).

    Article  Google Scholar 

  • Thomma B.P., Cammue B.P., Thevissen K.: Plant defensins.Planta216, 193–202 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga S., Hirokane H., Awaya K.: The primitive spleen of hagfish.Zool.Mag.82, 215–217 (1973).

    Google Scholar 

  • Toyama M.H., De Oliveira D.G., Beriam L.O., Novello J.C., Rodrigues-Simioni L., Marangoni S.: Structural, enzymatic and biological properties of new PLA(2) isoform fromCrotalus durissus terrificus venom.Toxicon8, 1033–1038 (2003).

    Article  CAS  Google Scholar 

  • Vanhoye D., Bruston F., Nicolas P., Amiche M.: Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain.Eur.J.Biochem.270, 2068–2081 (2002).

    Article  CAS  Google Scholar 

  • Vasta G.R., Lambris J.D.: Innate immunity in the Aegean: ancient pathways for today’s survival.Develop.Comp.Immunol.26, 217–225 (2002).

    Article  CAS  Google Scholar 

  • Větvička V., Šima P.:Evolutionary Mechanisms of Defense Reactions. Birkhäuser Verlag, Basel (Switzerland) 1998.

    Google Scholar 

  • Warren J.W., Wakefield J.N.: Trackway of tetrapod vertebrates from Upper Devonian of Victoria, Australia.Nature238, 469–470 (1972).

    Article  Google Scholar 

  • Waugh R.J., Raferty M.J., Bowie J.H., Tyler M.J., Wallace J.C.: The structures of the frenatin peptides from the skin secretion of the giant tree frogLitoria infrafrenata.J.Peptide Sci.2, 117–124 (1996).

    Google Scholar 

  • Wechselberger C.: Cloning of cDNAs encoding new peptides of the dermaseptin-family.Biochem.Biophys.Acta1388, 279–283 (1998).

    PubMed  CAS  Google Scholar 

  • Wegener K.L., Wabnitz P.A., Carver J.A., Bowie J.H., Chia B.C.S., Wallace J.C., Tyler M.J.: Host defence peptides from skin glands of the Australian Blue Mountains tree frogLitoria citropa.Eur.J.Biochem.265, 627–635 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wegener K.L., Brinkworth C.S., Bowie J.H., Wallace J.C., Tyler M.J.: Bioactive dahlein peptides from the skin secretions of the Australian aquatic frogLitoria dahlii: sequence determination by electrospray mass spectrometry.Commun.Mass Spectrom.15, 1726–1734 (2001).

    Article  CAS  Google Scholar 

  • Westerhoff H.V., Zasloff M., Rosner J.L., Hendler R.W., De Waal A., Vaz Gomes A., Jongsma P.M., Riethorst A., Juretic D.: Functional synergism of the maganins PGLa and maganin-2 inEscherichia coli, tumor cells and liposomes.Eur.J.Biochem.228, 257–264 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wong H., Bowie J.H., Carver J.A.: The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian tree frog,Litoria splendida.Eur.J.Biochem.247, 545–557 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Zapata A.G., Amemiya C.T.: Phylogeny of lower vertebrates and their immunological structures.Curr.Topics Microbiol.Immunol.248, 67–107 (2000).

    CAS  Google Scholar 

  • Zapata A.G., Cooper E.L.:The Immune System: Comparative Histophysiology. John Wiley & Sons, Chichester (UK) 1990.

    Google Scholar 

  • Zapata A.G., Toroba M., Vicente A., Varas A., Sacedon R., Jimenez E.: The relevance of cell microenvironments for the appearance of lympho-hemopoietic tissues in primitive vertebrates.Histol.Histopathol.10, 761–778 (1995).

    PubMed  CAS  Google Scholar 

  • Zasloff M.: Magainins, a class of antimicrobial peptides fromXenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor.Proc.Nat.Acad.Sci.USA84, 5449–5453 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Zeya H.I., Spitznagel J.K.: Cationic protein-bearing granules of polymorphonuclear leukocytes: separation from enzyme-rich granules.Science163, 1069–1071 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Zhao C., Nguyen T., Liu L., Sacco R.E., Brogden K.A., Lehrer R.I.: Gallinacin-3, an inducible epithelial β-defensin in the chicken.Infect.Immun.69, 2684–2691 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Zubay G.:Biochemistry, 3rd ed. William C. Brown, Dubuque (USA) 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Šíma.

Additional information

This review is a continuation of a recently published survey of mammalian antimicrobial substances (Šimaet al. 2003); in nonmammalian vertebrates, antimicrobial peptides represent a very effective component of defense.

The work associated with the topic of this review was supported by theGrant Agency of the Czech Republic (grants 524/01/0917 and 301/02/1232), by theGrant Agency of the Academy of Sciences of the Czech Republic (grant S502 0202) and by theInstitutional Research Concept AV 0Z 502 0903.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šíma, P., Trebichavský, I. & Sigler, K. Nonmammalian vertebrate antibiotic peptides. Folia Microbiol 48, 709–724 (2003). https://doi.org/10.1007/BF02931504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931504

Keywords

Navigation