Skip to main content
Log in

Microbial community structure along an altitude gradient in three different localities

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The microbial community structure along an altitude gradient was investigated in different localities, in Kalasi lake, Urumqi river and Sangong river, Xingjiang (China). The mean numbers of DAPI (4′,6-diamidino-2-phenylindole)-stained cells were lower in Kalasi lake than that in Urumqi river and Sangong river; these differences were attributed to increasing environmental harshness including lower soil organic carbon and nitrogen content, more acidic pH and lower annual temperature. In each locality, the numbers of bacteria and archaea measured with two fluorescence-labeled 16S rRNA oligonucleotide probes (EUB338 and ARCH915) were higher in a coniferous forest and lower in desert vegetation. A significant and positive relationship was found between microbial and soil organic carbon and total nitrogen along the altitudinal gradient, indicating that plant communities and soil nutrients influence the soil microbial structure. The results show that the microbial population in higher latitudinal site was fewer than lower latitudinal one, soil microorganisms were positively correlated to soil organic carbon and total nitrogen, and plant communities had an obviously impact on soil microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

asl:

above sea level

Corg :

soil organic carbon

Ntot :

total nitrogen

DAPI:

4′,6-diamidino-2-phenylindole

FISH:

fluorescencein situ hybridization

References

  • Amann R.I., Ludwig W., Schleifer K.H.: Phylogenetic identification andin situ detection of individual microbial cells without cultivation.Microbiol.Rev. 59, 143–169 (1995).

    PubMed  CAS  Google Scholar 

  • Bogoev V.M., Kenarova A.E., Vasilev V.L., Gyosheva M.M.: Quantitative distribution of microbial biomass in the soil profile of a high-mountain grassy ecosystem.Folia Microbiol. 47, 56–60 (2002).

    Article  CAS  Google Scholar 

  • Broughton L.C., Gross K.L.: Patterns of diversity in plant and soil microbial communities along a productivity gradient in Michigan old-field.Oecologia 125, 420–427 (2000).

    Article  Google Scholar 

  • Chapin F.S. III,Korner C.H.: Patterns, causes, changes and consequences of biodiversity in arctic and alpine ecosystems, inArctic and Alpine Biodiversity: Patterns, Causes, and Ecosystem Consequences, Ecological Studies, Vol. 113 (F.S. Chapin III, C. H. Korner, Eds). Springer-Verlag, Berlin 1995.

    Google Scholar 

  • Christensen H., Hansen M., Sørensen J.: Counting and size classification of active soil bacteria by fluorescencein situ hybridization with an rRNA oligonucleotide probe.Appl.Environ.Microbiol. 65, 1753–1761 (1999).

    PubMed  CAS  Google Scholar 

  • Couteaux M.M., Bottner P., Berg B.: Litter decomposition, climate and litter quality.Tree 10, 63–66 (1995).

    Google Scholar 

  • Derry A.M., Staddon W.J., Kevan P.G., Trevors J.T.: Functional diversity and community structure of microorganisms in three arctic soils as determined by SCSU.Biodivers.Conserv. 8, 205–221 (1999).

    Article  Google Scholar 

  • Elhottová D., Szili-Kovács T., Tříska J.: Soil microbial community of abandoned sand fields.Folia Microbiol. 47, 435–440 (2002).

    Article  Google Scholar 

  • Head I.M., Saunders J.R., Pickup R.W.: Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms.Microb.Ecol. 35, 1–21 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Insam H., Domsch K.H.: Relationship between soil organic carbon and microbial biomass in chronosequences of reclamation sites.Microb.Ecol. 15, 177–188 (1988).

    Article  Google Scholar 

  • Insam H., Haselwandter K.: Metabolic quotient of the soil microflora in relation to plant succession.Oecologia 79, 174–178 (1989).

    Article  Google Scholar 

  • Kandeler E., Marschner P., Tscherko D., Gahoonia T.S., Nielsen N.E.: Microbial community composition and functional diversity in the rhizosphere of maize.Plant & Soil 238, 301–312 (2002).

    Article  CAS  Google Scholar 

  • Kaneko T., Atlas R.: Diversity of bacterial populations in the Beaufort Sea.Nature 270, 596–599 (1977).

    Article  Google Scholar 

  • Kao C.M., Chen S.C., Chen Y.S., Lin H.M., Chen Y.L.: Detection ofBurkholderia pseudomallei in rice fields with PCR-based technique.Folia Microbiol. 48, 521–524 (2003).

    Article  CAS  Google Scholar 

  • Latour X., Philippot L., Corberand T., Lemanceau P.: The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type.FEMS Microbiol.Ecol. 30, 163–170 (1996).

    Google Scholar 

  • Llobet-Brossa E., Rosselló-Mora R., Amann R.: Microbial community composition of Wadden Sea sediments as revealed by fluorescencein situ hybridization.Appl.Environ.Microbiol. 64, 2691–2696 (1998).

    PubMed  Google Scholar 

  • Marilley L., Aragno M.: Phylogenetic diversity of bacterial communities differing in degree of proximity ofLolium perenne andTrifolium repens roots.Appl.Soil.Ecol. 13, 127–136 (1999).

    Article  Google Scholar 

  • Meentemeyer V., Berg B.: Regional variation in rate of mass loss ofPinus sylvestris needle litter in Swedish pine forests as influenced by climate and litter quality.Scand.J.Forest Res. 1, 167–180 (1986).

    Article  Google Scholar 

  • Muyzer G., Smalla K.: Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology.Antonie van Leeuwenhoek 73, 127–141 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ohtonen R., Vare H.: Vegetation composition determines microbial activities in a boreal forest soil.Microb.Ecol. 36, 328–335 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Staddon W.J., Trevors J.T., Duchesne L.C., Colombo C.A.: Soil microbial diversity and community structure across a climatic gradient in western Canada.Biodivers.Conserv. 7, 1081–1092 (1998).

    Article  Google Scholar 

  • Stephan A., Meyer A.H., Schmid B.: Plant diversity affects culturable soil bacteria in experimental grassland communities.J.Ecol. 88, 988–998 (2000).

    Article  Google Scholar 

  • Swift M.J., Andren O., Brussaard L., Briones M., Couteaus M.M., Ekschmitt K., Kjoller A., Loiseau P., Smith P.: Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies.Global Change Biol. 4, 729–744 (1998).

    Article  Google Scholar 

  • Tiedje J.M., Asuming-Brempong S., Nüsslein K., Marsh T.L., Flynn S.J.: Opening the black box of soil microbial diversity.Appl. Soil Ecol. 13, 109–122 (1999).

    Article  Google Scholar 

  • Veselova M., Kholmeckaya M., Klein S., Voronina E., Lipasova V., Metlitskaya A., Mayatskaya A., Lobanok E., Khmel I., Chernin L.: Production ofN-acylhomoserine lactone signal molecules by Gram-negative soil-borne and plant-associated bacteria.Folia Microbiol. 48, 794–798 (2003).

    CAS  Google Scholar 

  • Wahlström G., Danilov R.A.: Phytoplankton successions under ice cover in four lakes located in North-Eastern Sweden: effects of limingFolia Microbiol. 48, 379–384 (2003).

    Google Scholar 

  • Wardle D.A., Verhoef H.A., Clarholm M.: Trophic relationships in the soil microfood-web: predicting the responses to a changing global environment.Global Change Biol. 4, 713–727 (1998).

    Article  Google Scholar 

  • Whittaker R.H.:Communities and Ecosystems. MacMillan Publisher, New York 1975.

    Google Scholar 

  • Zak D.R., Grigal D.R., Gleeson S., Tilman D.: Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass.Biogeochemistry 11, 111–129 (1990).

    Article  Google Scholar 

  • Zak D.R., Tilman D., Parmenter R.R., Rice C.W., Fisher F.M., Vose J., Milchunas D., Martin C.W.: Plant production and soil microorganisms in late-successional ecosystems: a continental scale study.Ecology 75, 2333–2347 (1994).

    Article  Google Scholar 

  • Zhang X.J., Yao T.D., Ma X.J., Wang N.L.: Microorganisms in a high altitude glacier ice in Tibet.Folia Microbiol. 47, 241–246 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Additional information

This work was funded byKnowledge-Innovation Projects of Chinese Academy of Sciences (KZCX1-10-03, KZCX1-10-07),The Key Laboratory of Ice Core and Cold Regions Environments, Chinese Academy of Sciences (210 506), and theNatural Science Foundation of China (901 02003),

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Chen, T., Zhang, G. et al. Microbial community structure along an altitude gradient in three different localities. Folia Microbiol 49, 105–111 (2004). https://doi.org/10.1007/BF02931382

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931382

Keywords

Navigation