Skip to main content
Log in

Physiology ofAnabaena khannae andChlorococcum humicola under fluoride stress

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Sodium fluoride showed pH-dependent physiological responses in the two test microalgaeAnabaena khannae andChlorococcum humicola. A. khannae showed severe membrane damage with fluoride at low pH with leakage of pigments and electrolytes. Annihilation of photosynthesis along with inhibition in14C uptake was observed at pH 6 with 50 mg/L fluoride. While respiration was less affected in the cyanobacterium,C. humicola showed 30 % inhibition in respiratory activity. Resistance ofC. humicola to fluoride toxicity has been attributed to the hindrance provided by the thick cell envelope, intracellular compartmentation and increase in extracellular pH as a consequence of its metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badger M.R., Andrews T.J.: Photosynthesis and inorganic carbon usage by the marine cyanobacteriumSynechococcus sp.Plant Physiol. 70, 517–523 (1982).

    PubMed  CAS  Google Scholar 

  • Bennett A., Bogorad L.: Properties of subunits and aggregates of blue green algal biliproteins.Health Lab.Sci. 3, 90–100 (1971).

    Google Scholar 

  • Bhatnagar M.: Fluoride tolerance in microalgae and its ecological implications.PhD Thesis. Indian Agricultural Research Institute, New Delhi 1997.

    Google Scholar 

  • Deane-Drummond C.E.: Biochemical and biophysical aspects of nitrate uptake and its regulation, pp. 1–37 in Y.P. Abrol (Ed.):Nitrogen in Higher Plants. John Wiley and Sons, New York 1990.

    Google Scholar 

  • Giannini J.L., Briskin O.P., Miller G.W.: Effect of fluoride on the ATPase activity and membrane transport in isolated tonoplast vesicles from sugar beet.Plant Physiol. 83, 709–712 (1987a).

    Article  PubMed  CAS  Google Scholar 

  • Giannini J.L., Briskin D.P., Miller G.W.: Effect of fluoride on the plasmalemmal ATPase activity of sugar beet protoplasts.Plant Sci. 53, 39–44 (1987b).

    Article  CAS  Google Scholar 

  • Gutnekcht J., Walter A.: Hydrofluoric and nitric acid transport through lipid bilayer membranes.Biochem.Biophys.Acta 644, 153–156 (1980).

    Google Scholar 

  • Hekman W.E., Budd K., Palmer G.R., Mac Arthur J.D.: Response of certain fresh water planktonic algae to fluoride.J.Phycol. 20, 243–249 (1984).

    Article  CAS  Google Scholar 

  • Hochachka P.W., Teal J.M.: Respiratory metabolism in a marine dinoflagellate.Biol.Bull. 126, 274–281 (1964).

    Article  Google Scholar 

  • Klut M.E., Bisalputra T., Antia N.J.: Abnormal ultrastructural features of a marine dinoflagellate adapted to grow successfully in the presence of inhibitory fluoride concentration.J.Protozool. 28, 406–414 (1981).

    CAS  Google Scholar 

  • Kumar A., Tabita S.R., van Ballen C.: Isolation and characterization of heterocysts fromAnabena sp. strain CA.Arch.Microbiol. 133, 103–109 (1982).

    Article  CAS  Google Scholar 

  • Larslander L.: Chemicals in the aquatic environment, pp. 223–225 in R.S. DeSanto (Ed.):Advanced Hazard Assessment. Springer Ser. Environmental Management, Springer-Verlag, Berlin 1989.

    Google Scholar 

  • Mac Kinney G.: Absorption of light by chlorophyll solutions.J.Biol.Chem. 140, 315–322 (1941).

    CAS  Google Scholar 

  • McKee J.E., Wolf H.W.:Water Quality Criteria, Vol. 3A, 2nd ed., pp. 140–141 (Resources Agency of California, no. 3A), State Water Resources Control Board, Sacramento (USA) 1963.

    Google Scholar 

  • Miller G.W.: The effect of fluoride on higher plants — with special emphasis on early physiological and biochemical disorders.Fluoride 26, 3–22 (1993).

    CAS  Google Scholar 

  • Nichol B.E., Budd K., Palmer G.R., Mac Arthur J.D.: The mechanism of fluoride toxicity and fluoride resistance inSynechococcus leopoliensis (Cyanophyceae).J.Phycol. 23, 535–541 (1987).

    CAS  Google Scholar 

  • Smith A.O., Woodson B.R.: The effects of fluoride on growth ofChlorella pyrenoidosa.Vir.J.Sci. 16, 1–8 (1965).

    CAS  Google Scholar 

  • Stanier R.Y., Kunisawa R., Mandel M., Cohen Bazire G.: Purification and properties of unicellular blue green algae (order:Chroococcales).Bacteriol.Rev. 35, 171–205 (1971).

    PubMed  CAS  Google Scholar 

  • Thomas M.L.H.: Photosynthesis and respiration of aquatic microflora using the light and dark bottle oxygen method and dissolved oxygen analyser, p. 64 in C.S. Lobban, D.J. Chapman, B.P. Kremer (Eds):Experimental Phycology. A Laboratory Manual. Cambridge University Press, Cambridge 1988.

    Google Scholar 

  • Vogel G.L., Mao Y., Chow L.C., Proskin H.M.: Fluoride in plaque fluid, plaque, and saliva measured for 2 h after a sodium fluoride monofluorophosphate rinse.Caries Res. 34, 404–411 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, M., Bhatnagar, A. Physiology ofAnabaena khannae andChlorococcum humicola under fluoride stress. Folia Microbiol 49, 291–296 (2004). https://doi.org/10.1007/BF02931045

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931045

Keywords

Navigation