Skip to main content

Advertisement

Log in

Mammalian antibiotic peptides

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus creating a strong need to develop new antimicrobial agents. These new antibiotics should possess novel mechanisms of action and different cellular targets compared with existing antimicrobials. Recent discoveries and isolations of so-called animal antibiotics, mostly small cationic peptides, which represent a potent branch of natural immunity, offered the possibility to acquire new and effective antibiotics of this provenance. To this date, more than 500 antibiotic peptides have been distinguished and defined. Their antimicrobial properties present new opportunities for their use as antibiotics or for construction of their more effective derivatives, but much research is still required to pave the way to their practical use. This is a survey of substances forming an armamentarium of natural immunity of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-MSH:

α-melanocyte-stimulating hormone

ACTH:

adrenocorticotropic hormone

Bac 5, Bac 7:

bactenectins

BMAP-28:

bovine myeloid antibacterial protein

BNBD:

bovine β-defensin

BPI:

bactericidal/permeability-increasing protein

CAP37:

cationic antimicrobial protein (azurocidin, serprocidin, HBP)

CLCP:

chymotrypsin-like cationic protein

ECP:

eosinophil cationic protein

EDN:

eosinophil-derived neurotoxin

GALT:

gut-associated lymphoid tissue

HBD-1:

human β-defensin

HBP:

heparin-binding protein

HCMV:

human cytomegalovirus

HD-5, HD-6:

human α-defensins

hMBP-1:

human major basic protein-1

HNP:

human α-defensins

IL-1β:

interleukin 1β

LAP:

lingual antimicrobial peptide

LBP:

lipopolysaccharide-binding protein

LL-37:

lysine-rich linear peptide

LPS:

lipopolysaccharide

MAC:

membrane attacking complex

NF-κB:

nuclear factor κB

NP-1, -2, -3a, -3b, -4, -5:

rabbit neutrophil α-defensins

PG-1, -2, -3:

protegrins

PLA2 :

phospholipases A2

PMAP-23, -36, -37:

pig mycloid antibacterial peptides

PMN:

polymorphonuclear leukocytes

PMP:

platelet microbicidal protein

PR-39:

proline/arginine-rich antimicrobial peptide

RL-37:

rhesus monkey cathelicidin

RTD:

defensin-related precursors

SLPI:

secretory leukoproteinase inhibitor

TAP:

tracheal antimicrobial peptide

TNF-α:

tumor necrosis factor α

tPMP:

thrombin-activated platelet microbicidal protein

References

  • Agerberth B., Lee J.-Y., Bergman T., Carlquist M., Boman H.G., Mutt V., Jornvall H.: Aminoacid sequence of PR-39, isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides.Eur.J.Biochem.202, 849–854 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Agerberth B., Gunne H., Odeberg J., Kogner P., Boman H.G., Gudmundsson G.H.: Fall-39, a putative human peptide antibiotic, is a cysteine-free and expressed in bone marrow and testis.Proc.Nat.Acad.Sci.USA92, 195–199 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Andersen J.H., Osbakk S.A., Vorland L.H., Traavik T., Gutteberg T.J.: Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts.Antiviral Res.51, 141–149 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Andreu D., Rivas L.: Animal antimicrobial peptides: an overview.Biopolymers (Peptide Sci.)47, 415–433 (1998).

    Article  CAS  Google Scholar 

  • Aoki I., Shindoh Y., Nishida T., Nakai S., Hong Y.M., Mio M., Saito T., Tasaka K.: Sequencing and cloning of the cDNA of guinea pig eosinophil major basic protein.FEBS Lett.279, 330–334 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Ayabe T., Satchell D.P., Pesendorfer P., Tanabe H., Wilson C.L., Hagen S.J., Ouellette A.J.: Activation of Paneth cell α-defensins in mouse small intestine.J.Biol.Chem.277, 5219–5228 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bainton D.: Developmental biology of neutrophils and eosinophils, pp. 13–34 in J. Gallin, R. Snyderman (EDS):Inflammation: Basic Principles and Clinical Correlates. Lippincott-Willams and Wilkins, Philadelphia (USA) 1999.

    Google Scholar 

  • Bals R., Wang X., Meegalla R.L., Wattler S., Weiner D.J., Nehls M.C., Wilson J.M.: Mouse β-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs.Infect.Immun.67, 3542–3547 (1999).

    PubMed  CAS  Google Scholar 

  • Becker M., Diamond G., Verghese M., Randell S.H.: CD14-dependent LPS-induced β-defensin expression in human tracheobronchial epithelium.J.Biol.Chem.275, 29731–29736 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bensch K.W., Raida M., Magert H.J., Schultz-Knappe P., Forssmann W.G.: hBD-1: a novel β-defensin from human plasma.FEBS Lett.368, 331–335 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bevins C.L., Jones D.E., Dutra A., Schaffzin J., Muenke M.: Human enteric defensin genes: chromosomal map position and a model for possible evolutionary relationships.Genomics31, 95–106 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Blondin J., Janoff A.: The role of lysosomal elastase in the digestion ofEscherichia coli proteins by human polymorphonuclear leukocytes: experiments with living leukocytes.J.Clin.Invest.58, 971–979 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Boman H.G.: Antimicrobial peptides: key components needed in immunity.Cell65, 205–207 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Boman H.G.: Peptide antibiotics and their role in innate immunity.Ann.Rev.Immunol.13, 61–92 (1995).

    Article  CAS  Google Scholar 

  • Boman H.G.: Innate immunity and the normal microflora.Immunol.Rev.173, 5–16 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N., Cowland J.: Granules of the human neutrophilic polymorphonuclear leukocyte. Blood89, 3503–3521 (1997).

    PubMed  CAS  Google Scholar 

  • Bulet P., Hetru C., Dimarcq J.L., Hoffmann D.: Antimicrobial peptides in insects: structure and function.Dev.Comp.Immunol.23, 329–344 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Butterworth A.E.: Cell-mediated damage to helminths (review).Adv.Parasitol.23, 143–235 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Calafat J., Janssen H., Tool A., Dentener M.A., Knol E.F., Rosenberg H.F., Egesten A.: The bactericidal/permeability-increasing protein (BPI) is present in specific granules of human eosinophils.Blood91, 4770–4775 (1998).

    PubMed  CAS  Google Scholar 

  • Cheng J.F., Ott N.L., Peterson E.A., George T.J., Hukee M.J., Gleich G.J., Leiferman K.M.: Dermal eosinophils in atopic dermatitis undergo cytolitic degeneration.J.Allergy Clin.Immunol.99, 683–692 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Clohessy P.A., Golden B.E.: Calprotein-mediated zinc chelation as a biostatic mechanism in host defence.Scand.J.Immunol.42, 551–556 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Cole A.M., Hong T., Boo L.M., Nouyen T., Zhao C., Bristol G., Zack J.A., Waring A.J., Yang O.O., Lehrer R.I.: Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1.Proc.Nat.Acad.Sci.USA99, 1813–1818 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Condon M.R., Viera A., D’Alessio M., Diamond G.: Induction of a rat enteric defensin gene by hemorrhagic shock.Infect.Immun.67, 4787–4793 (1999).

    PubMed  CAS  Google Scholar 

  • Cutuli M., Cristiani S., Lipton J.M., Catania A.: Antimicrobial effects of α-MSH peptides.J.Leukoc.Biol.67, 233–239 (2000).

    PubMed  CAS  Google Scholar 

  • Del Buono B.J., Luscinkas F.W., Simons E.R.: Preparation and characterization of plasma membrane vesicles from human polymorphonuclear leucocytes.J.Cell.Physiol.141, 636–644 (1989).

    Article  PubMed  Google Scholar 

  • Delgado R., Carlin A., Airaghi L., Demitri M.T., Meda L., Galimberti D., Baron P.L., Lipton J.M., Catania A.: Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activate microglia.J.Leukoc.Biol.63, 740–745 (1998).

    PubMed  CAS  Google Scholar 

  • Del Sal G., Storici P., Schneider C., Romeo D., Zanetti M.: cDNA cloning of the neutrophile bactericidal peptide indolicidin.Biochem.Biophys.Res.Commun.187, 467–472 (1992).

    Article  PubMed  Google Scholar 

  • Derua R., Gustafson K.R., Pannell L.K.: Analysis of the disulfide linkage pattern in circulin A and B, HIV-inhibitory macrocyclic peptides.Biochem.Biophys.Res.Commun.228, 632–638 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Desreumaux P., Capron M.: Eosinophils in allergic reactions.Curr.Opin.Immunol.8, 790–795 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Diamond G., Bevins C.L.: β-Defensins: endogenous antibiotics of the innate host defense response.Clin.Immunol.Immunopathol.88, 221–225 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Diamond G., Zasloff M., Eck H., Brasseur M., Maloy W.L., Bevins C.L.: Tracheal antimicrobial peptide, a novel cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of cDNA.Proc.Nat.Acad.Sci.USA88, 3952–3956 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Diamond G., Russell J.P., Bevins C.L.: Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells.Proc.Nat.Acad.Sci.USA93, 5156–5160 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Diamond G., Kaiser V., Rhodes J., Russell J.P., Bevins C.L.: Transcriptional regulation of β-defensin gene espression in tracheal epithelial cells.Infect.Immun.68, 113–119 (2000).

    PubMed  CAS  Google Scholar 

  • Eberle A.N.:The Melanotropins. Karger, Basel (Switzerland) 1988.

    Google Scholar 

  • Eisenhauer P.B., Lehre R.I.: Mouse neutrophils lack defensins.Infect.Immun.60, 3446–3447 (1992).

    PubMed  CAS  Google Scholar 

  • Elsbach P.: The bactericidal permeability-increasing protein (BPI) in antibacterial host defense.J.Leukocyt.Biol.64, 14–18 (1998).

    CAS  Google Scholar 

  • Felton M.J., Golenbock D.T.: LPS-binding proteins and receptors.J.Leukoc.Biol.64, 25–32 (1998).

    Google Scholar 

  • Fleming A.: On a remarkable bacteriolytic element found in tissues and secretions.Proc.Roy.Soc.LondonB93, 306–317 (1922).

    Google Scholar 

  • Fox J.A.E.T., Kaicer J.: Immunoreactive α-melanocyte stimulating hormone, its distribution in the gastrointestinal tract of intact and hypophysectomized rats.Life Sci.28, 2127–2132 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Frank R., Gennaro R., Schneider K., Przybylski M., Romeo D.: Aminoacid sequences of two proline-rich bactenectins, antimicrobial proteins of bovine neutrophils.J.Biol.Chem.265, 18871–18874 (1990).

    PubMed  CAS  Google Scholar 

  • Frohm M., Agerberth B., Ahangari G., Stâhle-Bäckdahl J., Lidén S., Wigzell H., Gudmundsson G.H.: The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders.J.Biol.Chem.272, 15258–15263 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gabay J.E., Almeida R.P.: Antibiotic peptides and serine protease homologs in human polymorphonuclear leucocytes: defensins and azurocidin.Curr.Opin.Immunol.5, 97–102 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Gallo R.L., Ono M., Povsic T., Page C., Eriksson E., Klagsbrun M., Bernfield M.: Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds.Proc.Nat.Acad.Sci.USA91, 11035–11039 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Gallo R.L., Kim K.J., Bernfield M., Kozak C.A., Zanetti M., Merluzzi L., Gennaro R.: Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse.J.Biol.Chem.272, 13088–13093 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T.: Fatal attraction evaded: how pathogenic bacteria resist cationic polypeptides.J.Exp.Med.193, F31-F33 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T., Lehrer R.I.: Defensins.Curr.Opin.Immunol.6, 584–589 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T., Lehrer R.I.: Antimicrobial peptides of leucocytes.Curr.Opin.Hematol.4, 53–58 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T., Lehrer R.I.: Antimicrobial peptides of vertebrates.Curr.Opin.Immunol.10, 41–44 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T., Lehrer R.I.: Antibiotic peptides from higher eukaryotes: biology and applications.Mol.Med.Today5, 292–297 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T., Weiss J.: Antimicrobial peptides of phagocytes and epithelia.Semin.Hematol.34, 343–354 (1997).

    PubMed  CAS  Google Scholar 

  • Ganz T., Selsted M.E., Szklarek D., Hartwig S.S., Daher K., Bainton D.F., Lehrer R.I.: Defensins. Natural peptide antibiotics of human neutrophils.J.Clin.Investig.76, 1427–1435 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ganz T., Rayner J.R., Valore E.V., Tumolo A., Talmadge A., Fuller F.: The structure of the rabbit macrophage defensis genes and their organ-specific expression.J.Immunol.143, 1358–1365 (1989).

    PubMed  CAS  Google Scholar 

  • Ganz T., Selsted M.E., Lehrer R.I.: Defensins.Eur.J.Haematol.44, 1–8 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Gautam N., Olofsson A.M., Herwald H., Iversen L.F., Lundgren-Akerlund E., Hedqvist P., Arfors K.E., Flodgaard H., Lindbom L.: Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability.Nature Med.7, 1123–1127 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gazzano-Santoro H., Parent J.B., Grinna L., Horwitz A., Persons T., Elsbach P., Weiss J., Conlon P.J.: High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant aminoterminal fragment to the lipid A region of lipopolysaccharide.Infect.Immun.60, 4754–4761 (1992).

    PubMed  CAS  Google Scholar 

  • Gennaro R., Skerlavaj B., Romeo D.: Purification, composition, and activity of two bactenectins, antibacterial peptides of bovine neutrophils.Infect.Immun.57, 3142–3146 (1989).

    PubMed  CAS  Google Scholar 

  • Gille G., Sigler K.: Oxidative stress and living cells.Folia Microbiol.40, 131–152 (1995).

    Article  CAS  Google Scholar 

  • Gioir B.P., Quint P.A., Barton P., Kirsh E.A., Kitchen L., Goldstein B., Nelson B.J., Wedel N.I., Carrol S.F., Scannon P.J.: Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in children with a severe meningococcal sepsis.Lancet350, 1439–1443 (1997).

    Article  Google Scholar 

  • Gleich G., Kia H., Adolphson C.: Eosinophils, pp. 205–245 in M.M. Frank, M. Samter (Eds):Samter’s Immunologic Diseases. Little Brown, Boston (USA) 1995.

    Google Scholar 

  • Goldman M.J., Anderson G.M., Stolzenberg E.D., Kari U.P., Zasloff M., Wilson J.M.: Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis.Cell88, 553–560 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Groisman E.A.: The ins and outs of virulence gene expression: Mg2+ as a regulatory signal.Bioassays20, 96–101 (1998).

    Article  CAS  Google Scholar 

  • Gudmundsson G.H., Magnusson K.P., Chowdhary P.B.: Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the peptide antibiotic FALL-39.Proc.Nat.Acad.Sci.USA92, 7085–7089 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson G.H., Agerberth B., Odeberg J.: The human gene FALL-39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes.Eur.J.Biochem.238, 325–332 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Harder J., Bartels J., Christophers E., Schroder J.M.: A peptide antibiotic from human skin.Nature387, 861 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Hartwig S.S.L., Kokryakov V.N., Swiderek K.M., Aleshina G.M., Zhao C., Lehrer R.I.: Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leucocytes.FEBS Lett.362, 65–69 (1995).

    Article  Google Scholar 

  • Hase K., Eckmann L., Leopard J.D., Varki N., Kagnoff M.F.: Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium.Infect.Immun.70, 953–963 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hessian P.A., Edgeworth J., Hogg N.: MRP-8 and MRP-14, two abundant Ca2+-binding proteins of neutrophils and monocytes.J.Leukoc.Biol.53, 197–204 (1993).

    PubMed  CAS  Google Scholar 

  • Hirata M., Shimomura Y., Yoshida M., Morgan J.G., Palings I., Wilson D., Yen M.H., Wright S.C., Larrick J.W.: Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide-inhibitory activity.Infect.Immun.62, 1421–1426 (1994).

    PubMed  CAS  Google Scholar 

  • Hirata M., Zhong J., Wright S.C., Larrick J.W.: Structure and function of endotoxin-binding peptides derived from CAP 18.Progr.Clin.Biol.Res.392, 317–326 (1995).

    CAS  Google Scholar 

  • Hiratsuka T., Nakazato M., Date Y., Ashitani J., Minematsu T., Chino N., Matsukura S.: Identification of human β-defensin in respiratory tract and plasma and its increase in bacterial pneumonia.Biochem.Biophys.Res.Commun.249, 943–947 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann J.A.: Innate immunity of insects.Curr.Opin.Immunol.7, 4–10 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Huang H.W.: Action of antimicrobial peptides: two-state model.Biochemistry39, 8347–8352 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Huttner K.M., Kozak C.A., Bevins C.L.: The mouse genome encodes a single homolog of the antimicrobial peptide human β-defensin 1.FEBS Lett.413, 45–49 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim H.R., Aoki T., Pellegrini A.: Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules.Curr.Pharm.Des.8, 671–693 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y., Young L.-H., Scalia R., Ross C.R., Lpefer A.M.: PR-39, a proline/arginine-rich antimicrobial peptide, exerts cardioprotective effects in myocardial ischemia-reperfusion.Cardiovasc.Res.49, 69–77 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Iovine N., Elsbach P., Weiss J.: An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N- and C-terminal domains.Proc.Nat.Acad.Sci.USA94, 10973–10978 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jones D.E., Bevins C.L.: Paneth cells of the human small intestine express an antimicrobial peptide gene.J.Biol.Chem.267, 3216–3225 (1992).

    Google Scholar 

  • Jurado R.L.: Iron, infections, and anemia of inflammation.Clin.Infect.Dis.25, 888–895 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kaiser V., Diamond G.: Expression of mammalian defensin genes.J.Leukoc.Biol.68, 779–784 (2000).

    PubMed  CAS  Google Scholar 

  • Kokryakov V.N., Hartwig S.S.L., Panyutich E.A., Shevchenko A.A., Aleshina G.M., Shamova O.V., Korneva H.A., Lehrer R.I.: Protegrins: leucocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins.FEBS Lett.327, 231–236 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Krensky A.M.: Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells.Biochem.Pharmacol.59, 317–320 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kumar J., Okada S., Clayberger C., Krensky A.M.: Granulysin: a novel antimicrobial.Exp.Opin.Investig.Drugs10, 321–329 (2001).

    Article  CAS  Google Scholar 

  • Kupferwasser L.I., Yeaman M.R., Shapiro S.M., Nast C.C., Bayer A.S.:In vitro susceptibility to thrombin-induced platelet microbicidal protein is associated with reduced disease progression and complication rates in experimentalStaphylococcus aureus endocarditis: microbiological, histopathologic, and echocardiographic analyses.Circulation105, 746–752 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kuwata H., Yip T.T., Yip C.L., Tomita M., Hutchens T.W.: Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry.Biochem.Biophys.Res.Commun.245, 764–773 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Larrick J.W., Morgan J.G., Palings I., Hirata M., Yen M.H.: Complementary DNA sequence of rabbit CAP-18, a unique lipo-polysaccharide binding protein.Biochem.Biophys.Res.Commun.179, 170–175 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Larrick J.W., Hirata M., Balint R.F., Lee J., Zhong J., Wright S.C.: Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein.Infect.Immun.63, 1291–1297 (1995a).

    PubMed  CAS  Google Scholar 

  • Larrick J.W., Hirata M., Zhong J., Wright S.C.: Anti-microbial activity of human CAP18 peptides.Immunotechnology1, 65–72 (1995b).

    Article  PubMed  CAS  Google Scholar 

  • Larsson L.I.: Adrenocorticotropin-like andα-melanotropin-like peptides in a subpopulation of human gastrin cell granules: bioassay, immunoassay, and immunocytochemical evidence.Proc.Nat.Acad.Sci.USA78, 2990–2994 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Larson K.A., Horton M.A., Madden B.J., Gleich G.J., Lee N.A., Lee J.J.: The identification and cloning of a murine major basic protein gene expressed in eosinophils.J.Immunol.155, 3002–3012 (1995).

    PubMed  CAS  Google Scholar 

  • Lefort J., Nahori M.A., Ruffie C., Vargaftig B.B., Pretolani M.:In vitro neutralization of eosinophil-derived major basic protein inhibits antigen-induced bronchial hyperreactivity in sensitized guinea pigs.J.Clin.Invest.97, 1117–1121 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Lehrer R.I.: Microbicidal mechanisms, oxygen-independent, pp. 1719–1725 in P.J. Delves, I.M. Roitt (Eds):Encyclopedia of Immunology. Academic Press, New York 1998.

    Google Scholar 

  • Lehrer R.I., Ganz T.: Antimicrobial polypeptides of human neutrophils.Blood76, 2169–2181 (1990).

    PubMed  CAS  Google Scholar 

  • Lehrer R.I., Ganz T.: Cathelicidins: a family of endogenous antimicrobial peptides.Curr.Opin.Hematol.9, 18–22 (2002).

    Article  PubMed  Google Scholar 

  • Lehrer R.I., Daher K., Ganz T., Selsted M.E.: Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leucocytes.J.Virol.54, 467–472 (1985).

    PubMed  CAS  Google Scholar 

  • Lehrer R.I., Ganz T., Selsted M.E.: Defensins: endogenous antibiotic peptides of animal cells.Cell64, 229–230 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Lehrer R.I., Lichtenstein A.K., Ganz T.: Defensins: antimicrobial and cytotoxic peptides of mammalian cells.Ann.Rev.Immunol.11, 105–128 (1993).

    Article  CAS  Google Scholar 

  • Leippe M.: Ancient weapons: NK-lysin is a mammalian homolog to pore-forming peptides of a protozoan parasite.Cell83, 17–18 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Leippe M.: Antimicrobial and cytolytic polypeptides of amoeboid protozoa — effector molecules of primitive phagocytes.Dev.Comp.Immunol.23, 267–279 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lipton J.M., Catania A.: Anti-inflammatory influence of the neuroimmunomodulatorα-MSH.Immunol.Today18, 140–145 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lipton J.M., Ceriani G., Macaluso A., McCoy D., Carnes K., Biltz J., Catania A.: Anti-inflammatory effects of the neuropeptideαMSH in acute, chronic, and systemic inflammation.Ann.N.Y.Acad.Sci.741, 137–148 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Levy O.: Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents.Blood96, 2664–2672 (2000a).

    PubMed  CAS  Google Scholar 

  • Levy O.: A neutrophil-derived anti-infective molecule: bactericidal (permeability-increasing protein.Antimicrob.Agents.Chemother.44, 2925–2931 (2000b).

    Article  PubMed  CAS  Google Scholar 

  • Levy O., Weiss J., Zarember K., Ooi C.E., Elsbach P.: Antibacterial 15-kDa protein isoforms (p15) are members of a novel family of leucocyte proteins.J.Biol.Chem.268, 6058–6063 (1993).

    PubMed  CAS  Google Scholar 

  • Levy O., Ooi C.E., Weiss J., Lehrer R.I., Elsbach P.: Individual and synergistic effects of rabbit granulocyte proteins onEscherichia coli.J.Clin.Invest.94, 672–682 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Levy O., Martin S., Eichenwald E., Ganz, T., Valore E., Carroll S.F., Lee K., Goldmann D., Thorne G.M.: Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permability-increasing protein.Pediatrics104, 1327–1333 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Linzmeier R., Michaelson D., Liu D., Ganz Z.: The structure of neutrophil defensin genes.FEBS Lett.321, 267–273 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Linzmeier R., Ho C.H., Hoang B.V., Ganz T.: A 450-kb contig of defensin genes on human chromosome 8p23.Gene233, 205–211 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Liu C.C., Walsh C.M., Young J.D.: Perforin: structure and function.Immunol.Today16, 194–201 (1995).

    Article  PubMed  Google Scholar 

  • Liu L., Heng H.H., Zhao C., Ganz T.: Human α- and β-defensins evolved from a common pre-mammalian ancestor peptide.J.Invest.Med.44, 294 (1996).

    Google Scholar 

  • Liu L., Zhao C., Heng H.H., Ganz T.: The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfice topology share a common ancestry.Genomics43, 316–320 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Liu L., Wang L., Zhao C., Heng H.H.Q., Schutte B.C., McCray P.B. Jr.,Gant T.: Structure and mapping of the human β-defensin HBD-2 gene and its expression at sites of inflammation.Gene222, 237–244 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Liu A.Y., Destoumieux D., Wong A.V., Park C.H., Valore E.V., Liu L., Ganz T.: Human β-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation.J.Invest.Dermatol.118, 275–281 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Loomans H.J., Hahn B.L., Li Q.Q., Phadnis S.H., Sohnie P.G.: Histidine-based zinc-binding sequences and the antimicrobial activity of calprotectin.J.Infect.Dis.177, 812–814 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Macias M.P., Welch K.C., Denzler K.L., Larson K.A., Lee N.A.: Identification of a new murine eosinophil major basic protein (mMBP) gene: cloning and characterization of mMBP-2.J.Leukoc.Biol.67, 567–576 (2000).

    PubMed  CAS  Google Scholar 

  • Mambula S.S., Simons E.R., Hastey R., Selsted M.E., Levitz S.M.: Human neutrophil-mediated nonoxidative antifungal activity againsCryptococcus neoformans.Infect.Immun.68, 6257–6264 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Mars W.M., Patmasiriwat P., Maity T., Huff V., Weil M.M., Saunders G.F.: Inheritance of unequal numbers of the genes encoding the human neutrophil defensins HP-1 and Hp 3.J.Biol.Chem.270, 30371–30376 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Martin E., Ganz T., Lehrer R.I.: Defensins and other endogeneous peptide antibiotics of vertebrates.J.Leukoc.Biol.58, 128–136 (1995).

    PubMed  CAS  Google Scholar 

  • McCray P.B., Bentley L.: Human airway epithelia express a β-defensin.Am.J.Respir.Cell.Mol.Biol.16, 343–349 (1997).

    PubMed  CAS  Google Scholar 

  • Moqbel R., Macdonald A.J., Cromwell O., Kay A.B.: Release of leukotriene C4 (LTC4) from human eosinophils following adherence to IgE- and IgG-coated schisostomula ofSchistosoma mansoni.Immunology69, 435–442 (1990).

    PubMed  CAS  Google Scholar 

  • Morrison G.M., Davidson D.J., Kilanowski F.M., Borthwick D.W., Crook K., Maxwell I., Govan J.R.W., Dorin J.R.: Mouse β-defensin-1 is a functional homolog of human β-defensin-1.Mamm.Genome9, 453–457 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Morison G.M., Davidson D.J., Dorin J.R.: A novel mouse β-defensin, Defb2, which is upregulated in the airways by lipopoly-saccharide.FEBS Lett.442, 112–116 (1999).

    Article  Google Scholar 

  • Moy J.N., Gleich G.J., Thomas L.L.: Noncytotoxic activation of neutrophils by eosinophil granule major basic protein.J.Immunol.145, 2626–2632 (1990).

    PubMed  CAS  Google Scholar 

  • Muller W.A.: New mechanisms and pathways for monocyte recruitment.J.Exp.Med.194, F47-F51 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Murthy A.R., Lehrer R.I., Harwig S.S., Miyasaki K.T.:In vitro candidastatic properties of the human neutrophil calprotectin complex.J.Immunol.151, 6291–6301 (1993).

    PubMed  CAS  Google Scholar 

  • Nagaoka I., Yamishita T.: Purification of the 11- and 55-kDa antibacterial polypeptides from guinea pig neutrophils.Arch.Biochem.Biophys.328, 219–226 (1996).

    Article  PubMed  Google Scholar 

  • Nittoh T., Watanabe M., Okayama H., Misawa S., Isobe Y., Hayashi H., Mue S., Ohuchi K.: Cloning of cDNA for rat eosinophil major basic protein.Biochim.Biophys.Acta1264, 261–264 (1995).

    PubMed  Google Scholar 

  • Oderberg H., Olsson I.: Mechanism for the microbial activity of cationic proteins of human granulocytes.Infect.Immun.14, 1269–1275 (1976).

    Google Scholar 

  • Ohno I., Lea R.G., Flanders K.C., Clark D.A., Banwatt D., Dolovich J., Denburg J., Harley C.B., Gauldie J., Jordana M.: Eosinophils in chronicaly inflamed human upper airway tissues express transforming growth factor beta 1 gene (TGF beta 1).J.Clin.Invest.89, 1662–1668 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Park C.H., Valore E.V., Waring A.J., Ganz T.: Hepcidin, a urinary antimicrobial peptide synthesized in the liver.J.Biol.Chem.276, 7806–7810 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pestonjamasp V.K., Huttner K.H., Gallo R.L.: Processing site and gene structure for the murine antimicrobial peptide CRAMP.Peptides22, 1643–1650 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Peters M.S., Rodriguez M., Gleich G.J.: Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy.Lab.Invest.54, 656–662 (1986).

    PubMed  CAS  Google Scholar 

  • Pham C.T., Ley T.J.: The role of granzyme B cluster proteases in cell-mediated cytotoxicity.Semin.Immunol.9, 127–133 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Plager D.A., Loegering D.A., Weileer D.A., Checkel J.L., Wagner J.M., Clarke N.J., Naylor S., Page S.M., Thomas L.L., Akerblom I., Cocks B., Stuart S., Gleich G.J.: A novel and highly divergent homolog of human eosinophil granule major basic protein.J.Biol.Chem.274, 14464–14473 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Qu X.D., Lehrer R.I.: Secretory phospholipase A2 is the principal bactericide for staphylococci and other Gram-positive bacteria in human tears.Infect.Immun.66, 2791–2797 (1998).

    PubMed  CAS  Google Scholar 

  • Quayle A.J., Porter E.M., Nussbaum A.A., Wang Y.M., Brabec C., Yip K.P., Mok S.C.: Gene expression, immunolocalization, and secretion of human defensins-5 in human female reproductive tract.Am.J.Pathol.152, 1247–1258 (1998).

    PubMed  CAS  Google Scholar 

  • Quellette A.J.: Paneth cells and innate immunity in the crypt microenvironment.Gastroenterology113, 1779–1784 (1997).

    Article  Google Scholar 

  • Quellette A.J., Hsieh M.M., Nosek M.T., Cano-Gauci D.F., Huttner K.M., Buick R.N., Selsted M.E.: Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptidin isoforms.Infect.Immun.62, 5040–5047 (1994).

    Google Scholar 

  • Rajora N., Boccoli G., Burns D., Sharma S., Catania A., Lipton J.M.: α-MSH modulates local and circulating tumor necrosis factor α in experimental brain inflammation.J.Neurosci.17, 2181–2186 (1997).

    PubMed  CAS  Google Scholar 

  • Reddy E.S.P., Bhargava P.M.: Seminalplasmin — an antimicrobial protein from bovine seminal plasma which acts inE. coli by specific inhibition of rRNA synthesis.Nature279, 725–728 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Risso A.: Leucocyte antimicrobial peptides: multifunctional effector molecules of innate immunity.J.Leukoc.Biol.68, 785–792 (2000).

    PubMed  CAS  Google Scholar 

  • Risso A., Braidot E., Sordano M.C., Vianello A., Macri F., Skerlavaj B., Zanetti M., Gennaro R., Bernardi P.: BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore.Mol.Cell Biol.22, 1926–1935 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Rohrbach M.S., Wheatley C.L., Slifman N.R., Gleich G.J.: Activation of platelets by eosinophil granule proteins.J.Exp.Med.172, 1271–1274 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Romeo D., Skerlavaj B., Bolognesi M., Gennaro R.: Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils.J.Biol.Chem.263, 9573–9575 (1988).

    PubMed  CAS  Google Scholar 

  • Russel J.P., Diamond G., Tarver A.P., Scalin T.F., Bevins C.L.: Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha.Infect.Immun.64, 1565–1568 (1996).

    Google Scholar 

  • Schaller B.S., Schulze A., Bals R.: Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection.Am.J.Respir.Crit.Care Med.165, 992–995 (2002).

    Google Scholar 

  • Schittek B., Hipfel R., Sauer B., Bauer J., Kalbacher H., Stevanovic S., Schirle M., Schroeder K., Blin N., Meier F., Rassner G., Garbe C.: Dermcidin: a novel human antibiotic peptide secreted by sweat glands.Nature Immunol.2, 1133–1137 (2001).

    Article  CAS  Google Scholar 

  • Schonwetter B.S., Stolzenberg E.D., Zasloff M.A.: Epithelial antibiotics induced at sites of inflammation.Science267, 1645–1648 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Scott M.G., Hancock R.E.: Cationic antimicrobial peptides and their multifunctional role in the immune system.Crit.Rev.Immunol.20, 407–431 (2000).

    PubMed  CAS  Google Scholar 

  • Selsted M.E., Brown D.M., DeLange R.J., Lehrer R.I.: Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages.J.Biol.Chem.258, 14485–14489 (1983).

    PubMed  CAS  Google Scholar 

  • Selsted M.E., Novotny M.J., Morris W.L., Tang Y.-Q., Smith W., Cullor J.S.: Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils.J.Biol.Chem.267, 4292–4295 (1992).

    PubMed  CAS  Google Scholar 

  • Selsted M.E., Tang Y.-Q., Morris W.L., McGuire P.A:, Novotny M.J., Smith W., Henschen A.H., Cullor J.S.: Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils.J.Biol.Chem.268, 6641–6648 (1993).

    PubMed  CAS  Google Scholar 

  • Shi J., Ganz T.: The role of protegrins and other elastase-activated polypeptides in the bactericidal properties of porcine inflammatory fluids.Infect.Immun.66, 3611–3617 (1998).

    PubMed  CAS  Google Scholar 

  • Sigler K., Chaloupka J., Brozmanová J., Stadler N., Hófer M.: Oxidative stress in microorganisms — I. Microbialvs. higher cells — damage and defense in relation to cell aging and death.Folia Microbiol.44, 587–624 (1999).

    Article  CAS  Google Scholar 

  • Šíma P., Větvička V.:Evolution of Immune Reactions. CRC Press, Boca Raton (USA) 1990

    Google Scholar 

  • Simpson A.J., Maxwell A.I., Govan J.R.W., Haslett C., Sallenave J.M.: Elafin (elastase-specific inhibitor) has anti-microbial activity against Gram-positive and Gram-negative respiratory pathogens.FEBS Lett.452, 309–313 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Singh P.K., Jia H.P. Wiles K., Hesselberth J., Liu L., Conway B.A.D., Greenberg E.P., Valore E.V., Welsh M.J., Ganz T., Tack B.F., McGray P.B. Jr.: Production of β-defensins by human airway epithelia.Proc.Nat.Acad.Sci.USA95, 14961–14966 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Skerlavaj B., Gennaro R., Bagella L., Merluzzi L., Risso A., Zanetti M.: Biological characterization of two novel cathelicidin-derivated peptides and identification of structural requirements for their antimicrobial activity and cell lytic activity.J.Biol.Chem.271, 28375–28381 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Slungaard A., Mahoney J. Jr.: Bromide-dependent toxicity of cosinophil peroxidase for endothelium and isolated working rat hearts: a model for eosinophilic endocarditis.J.Exp.Med.173, 117–126 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Smyth M.J., O’Connor M.D., Trapani J.A.: Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies.J.Leukoc.Biol.60, 555–562 (1996).

    PubMed  CAS  Google Scholar 

  • Smyth M.J., Kelly J.M., Sutton V.R., Davis J.E., Browne K.A., Sayers T.J., Trapani J.A.: Unlocking the secrets of cytotoxic granule proteins.J.Leukoc.Biol.70, 18–29 (2001).

    PubMed  CAS  Google Scholar 

  • Sorenson O., Bratt T., Johnsen A., Madsen M., Borregaard N.: The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma.J.Biol.Chem.274, 22445–22451 (1999).

    Article  Google Scholar 

  • Šplíchal I., Trebichavský I.: Cytokines and other important inflammatory mediators in gestation and bacterial intraamniotic infections.Folia Microbiol.46, 345–351 (2001).

    Article  Google Scholar 

  • Šplíchal I., Trebichavský I., Šplíchalová A., Dítětová L., Zahradníčková M.:Escherichia coli administered into pig amniotic cavity appear in fetal airways and attract macrophages into fetal lungs.Physiol.Res.5, 523–528 (2002).

    Google Scholar 

  • Star R.A., Rajora N., Huang J., Stock R.C., Catania A., Lipton J.M.: Evidence of autocrine modulation of macrophage nitric oxide synthase by α-MSH.Proc.Nat.Acad.Sci.USA92, 8016–8020 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Staubitz P., Peschel A., Nieuwenhuizen W.F., Otto M., Gotz F., Jung G., Jack R.W.: Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin.J.Peptide Sci.7, 552–564 (2001).

    Article  CAS  Google Scholar 

  • Steinbakk M., Naess-Andresen C.F., Lingaas E., Dale I., Brandtzaeg P., Fagerhol M.K.: Antimicrobial action of calcium binding leucocyte L1 protein, calprotectin.Lancet336, 763–765 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Stirling J.W.: Ultrastructural localization of lysozyme in human colon eosinophils using the protein A-gold technique: effects of processing on probe distribution.J.Histochem.Cytochem.37, 709–714 (1989).

    PubMed  CAS  Google Scholar 

  • Stolzenberg E.D., Anderson G.M., Ackermann M.R., Whitlock R.H., Zasloff M.: Epithelial antibiotic induced in states of disease.Proc.Nat.Acad.Sci.USA94, 8686–8690 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Storici P., Zanetti M.: A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39.Biochem.Biophys.Res.Commun.196, 1058–1065 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Storici P., Scocchi M., Tossi A., Genaro R., Zanneti M.: Chemical synthesis and biological peptide with a novel antibacterial peptide deduced from a pig myeloid cDNA.FEBS Lett.337, 303–307 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Stříž I., Pokorná-Sochůrková H., Zheng L., Jarešová M., Guzman J., Costabel U.: Calprotectin expression and mononuclear phagocytic subpopulations in peripheral blood and bronchoalveolar lavage.Sarcoidosis Vasculitis Dif.Lung Dis.18, 57–63 (2001).

    Google Scholar 

  • Tang Y.-Q., Selsted M.E.: Characterization of the disulfide motif in BNBD-12, and antimicrobial β-defensin peptide from bovine neutrophils.J.Biol.Chem.268, 6649–6653 (1993).

    PubMed  CAS  Google Scholar 

  • Tang Y.-Q., Yuan J., Miller C.J., Selsted M.E.: Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of α-defensins from rhesus macaque leucocytes.Infect.Immun.67, 6139–6144 (1999a).

    PubMed  CAS  Google Scholar 

  • Tang Y.-Q., Yuan J., Sapay G., Sapay K., Tran D., Miller C.J., Ouellette A.J., Selsted M.E.: A cyclic antimicrobial peptide produced in primate leucocytes by ligation of two truncated α-defensins.Science286, 498–502 (1999b).

    Article  PubMed  CAS  Google Scholar 

  • Tapper H., Karlsson A., Morgelin M., Flodgaard H., Herwald H.: Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles.Blood99, 1785–1793 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Thody A.J., Ridley K., Penny R.J., Chalmers R., Fisher C., Shuster S.: MSH peptides are present in mammalian skin.Peptides4, 813–816 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Tossi A., Scochi M., Zanetti M., Storici P., Gennaro R.: PMAP-37, a novel antibacterial peptide from pig myeloid cells. CDNA cloning, chemical synthesis and activity.Eur.J.Biochem.228, 941–946 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Tran D., Tran P.A., Tang Y.Q., Yuan J., Cole T., Selsted M.E.: Homodimeric ϑ-defensins from rhesus macaque leucocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides.J.Biol.Chem.277, 3079–3084 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Valore E.V., Park C.H., Quayle A.J., Wiles K.R., McGray P.B., Ganz T.: Human β-defensin-1: an antimicrobial peptide of urogenital tissues.J.Clin.Invest.101, 1633–1642 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Venge P.: Human eosinophil granule proteins: structure, function and release, pp. 43–55 in H. Smith, R.M. Cook (Eds):Immunopharmacology of Eosinophils. Academic Press, Epsom (UK) 1993.

    Google Scholar 

  • Verhoef J.: Phagocytosis, pp. 1935–1940 in P.J. Delves, I.M. Roitt (Eds):Encyclopedia of Immunology. Academic Press, New York 1998.

    Google Scholar 

  • Větvička V., Šíma P.:Evolutionary Mechanisms of Defense Reactions. Birkhäuser-Verlag, Basel 1998.

    Google Scholar 

  • Wagner J.M., Bartemes K., Vernof K.K., Dunnette S., Offord K.P., Checkel J.L., Gleich G.J.: Analysis of pregnacy-associated major basic protein levels throughout gestation.Placenta14, 671–681 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Wasmoen T.L., Mckean D.J., Bernischke K., Coulam C.B., Gleich G.J.: Evidence of eosinophil granule major basic protein in human placenta.J.Exp.Med.170, 2051–2063 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Weinrauch Y., Abad C., Lianf N.S., Lowry S.F., Weiss J.: Mobilization of potent plasma bactericidal activity during systemic bacterial challenge. Role of group IIA phospholipase A2.J.Clin.Invest.102, 633–638 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Weller P.F.: Lipid, peptide and cytokine mediators elaborated by eosinophils, pp. 25–42 in H. Smith, R.M. Cook (Eds):Immunopharmacology of Eosinophils. Academic Press, Epsom (UK) 1993.

    Google Scholar 

  • van Wetering S., Stark P.J., Rabe K.F., Hiemstra P.S.: Defensins: key players or bystanders in infection, injury, and repair in the lung?J.Allergy Clin.Immunol.104, 1131–1138 (1999).

    Article  PubMed  Google Scholar 

  • White S.H., Wimley W.C., Selsted M.: Structure, function, and membrane integration of defensins.Curr.Opin.Struct.Biol.5, 521–527 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wilde C.G., Griffith J.E., Marra M.N., Snable J.L., Scott R.W.: Purification and characterization of human neutrophil peptide 4, a novel member of the defensins family.J.Biol.Chem.264, 11200–11203 (1989).

    PubMed  CAS  Google Scholar 

  • Wilde C.G., Snable J.L., Griffith J.E., Scott R.W.: Characterization of two azurophil granule proteases with active-site homology to neutrophil elastase.J.Biol.Chem.265, 2038–2041 (1990).

    PubMed  CAS  Google Scholar 

  • Wilson C.L., Quellette A.J., Satchell D.P., Ayabe T., Ys L.P.-B., Sratman J.L., Hultgren S.J., Matrisian L.M., Parks W.C.: Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense.Science286, 113–117 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wu H.G., Zhang G., Ross C.R., Blecha F.: Cathelicidin gene expression in porcine tissues: roles in ontogeny and tissue specificity.Infect.Immun.67, 439–442 (1999).

    PubMed  CAS  Google Scholar 

  • Wu H.G., Zhang G., Minton E., Ross C.R., Blecha F.: Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid andSalmonella enterica serovar Typhimurium infection.Infect.Immun.68, 5552–5558 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y., Fukuhara S., Nagase T., Tomita T., Hitomi S., Kimura S., Kurihara H., Ouchi Y.: A novel mouse β-defensin, mBD-6, predominantly expressed in skeletal muscle.J.Biol.Chem.276, 31510–31514 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Yeaman M.R., Bayer A.S., Koo S.P., Foss W., Sullam P.M.: Platelet microbicidal proteins and neutrophil defensin disrupt theStaphylococus aureus cytoplasmic membrane by distinct mechanisms of action.J.Clin.Invest..101, 178–187 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yue G., Merlin D., Selsted M.E., Lencer W.I., Madara J.L., Eaton D.C.: Cryptidin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells.Am.J.Physiol.Gastrointest.Liver Physiol.282, G757-G765 (2002).

    PubMed  CAS  Google Scholar 

  • Yount N.Y., Wang M.S.C., Yuan J., Banaiee N., Quellette A.J., Selsted M.E.: Rat neutrophil defensins: precursor structures and expression during neutrophilic myelopoiesis.J.Immunol.155, 4476–4484 (1995).

    PubMed  CAS  Google Scholar 

  • Zanetti M., Del Sal G., Storici P., Scheider C., Romeo D.: The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics.J.Biol.Chem.268, 522–526 (1993).

    PubMed  CAS  Google Scholar 

  • Zanetti M., Storici P., Tossi A., Scocchi M., Gennaro R.: Molecular cloning and chemical synthesis of a novel antibacterial peptide derived from pig myeloid cells.J.Biol.Chem.269, 7855–7858 (1994).

    PubMed  CAS  Google Scholar 

  • Zanetti M., Gennaro R., Romeo D.: Cathelicidins: a novel protein family with a common proregion and a variable C-terminal anti-microbial domain.FEBS Lett.374, 1–5 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Zarember K., Elsbach P., Shin-Kim K., Weiss J.: p15s (15-kD antimicrobial proteins) are stored in the secondary granules of rabbit granulocytes: implications for antibacterial synergy with the bacterial/permeability-increasing protein in inflammatory fluids.Blood89, 672–679 (1997).

    PubMed  CAS  Google Scholar 

  • Zarrinkalam K.H., Leavesley D.I., Stanley J.M., Atkins G.J., Faull R.J.: Expression of defensin antimicrobial peptides in the peritoneal cavity of patients on peritoneal dialysis.Perit.Dial.Internat.21, 501–508 (2001).

    CAS  Google Scholar 

  • Zeya H.I., Spitznagel J.K.: Cationic proteins of polymorphonuclear leucocyte lysosomes — 1. Resolution of antibacterial and enzymatic activities.J.Bacteriol.91, 750–754 (1966).

    PubMed  CAS  Google Scholar 

  • Zhai Y., Saier M.H. Jr.: The amoebapore superfamily.Biochim.Biophys.Acta1469, 87–99 (2000).

    PubMed  CAS  Google Scholar 

  • Zhang G., Wu H., Shi J., Ganz T., Ross C.R., Blecha F.: Molecular cloning and tissue expression of porcine β-defensin-1.FEBS Lett.424, 37–40 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zhao C., Wang I., Lehrer R.I.: Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells.FEBS Lett.396, 319–322 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Zhao C., Nguyen T., Boo L.M., Hong T., Espiritu C., Orlov D., Wang W., Waring A., Lehrer R.I.: RL-37, an α-helical antimicrobial peptide of the rhesus monkey.Antimicrob.Agents Chemother.45, 2695–2702 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Zheutlin L.M., Ackerman S.J., Gleich G.J., Thomas L.L.: Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins.J.Immunol.133, 2180–2185 (1984).

    PubMed  CAS  Google Scholar 

  • Zhu Q., Singh A.V., Bateman A., Esch F., Solomon S.: The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung.J.Steroid Biochem.27, 1017–1022 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Šíma.

Additional information

The work associated with the topic of this review was supported by theGrant Agency of the Czech Republic (grants 524/01/0917 and 301/02/1232), by theGrant Agency of the Academy of Sciences of the Czech Republic (grant S 502 0202) and by theInstitutional Research Concept AV 0Z 502 0903.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šíma, P., Trebichavský, I. & Sigler, K. Mammalian antibiotic peptides. Folia Microbiol 48, 123–137 (2003). https://doi.org/10.1007/BF02930945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930945

Keywords

Navigation