Skip to main content
Log in

On plant alcohol dehydrogenases

Rostlinné alkoholdehydrogenasy

  • Published:
Biologia Plantarum

Abstract

We have found in a number of plants (lentil, lupine, bean, barley, oats, rye, wheat, cucumber, melon, flax, sunflower and rape) that varying amounts of ethanol are formed under natural anaerobiosis and, that in later growth periods these plants continue to react to anaerobiosis by formation of ethanol. When the testa has opened in germinating plants or, when plants are transferred from the anaerobic atmosphere to air, ethanol disappears.

Plants contain alcohol dehydrogenases, the activity of which depends on the alcohol concentration in their tissue; the maximum concentration is reached during natural anaerobiosis, rising in the course of further growth when the plants are kept in a nitrogen atmosphere.

Alcohol dehydrogenases of the plants studied are localised in the soluble cell fraction notsedimenting at 120 000 g, their pH optimum is in the weakly alkaline region and their Michaelis constants are equal in order of magnitude (10−5 m). They are all inhibited in the same way by Zn2+, Cu2+, Hg2+, B4 O 7 2− ions, p-chloromercuric benzoate, iodoacetate, EDTA and phenantroline, which may be considered as evidence of the presence of −SH groups. The specific activity of alcohol dehydrogenase preparations is higher in plants grown in light than in plants grown in the dark.

The specific activity of plant alcohol dehydrogenases can be increased by precipitation with ammonium sulphate by at most one order of magnitude, while all the activity is lost by this purification process in the case of cereals.

The following isoenzyme composition of ADH was found by means of electrophoresis on polyacrylamide: the enzyme from poas and sunflower, for example, is composed of three, that from wheat and oats six, the enzyme from maize and barley of five isoenzymes.

Abstract

Zjistily jsme, že u celé řady rostlin (čočky, lupiny, fazolu, pelušky, ječmene, ovsa, žita, pšenice, okurky, melounu, lnu, slunečnice, řepky olejky) se za přirzené anaerobiosy tvoří větší nebo menší množství ethanolu a že všechny tyto rostliny reagují i v dalším růstovém, údobí na anaerobiosu tvorbou ethanolu. Ethanol po prasknutí testy u klíčících rostlin nebo přenesení rostlin z anaerobní atmosféry na vzduch mizí.

Rostliny obsahují alkoholdehydrogenasy, jejichž aktivity je zévislá na koncentraci ethanolu vpletivech: dosahuje maxima během přirozené anaerobiosy a v dalším růstu se zvýší při přechovávání rostlin v atmosféře dusíku.

Alkoholdehydrogenasy studovaných rostlin jsou lokalisované v rozpustné buněčné frakei nesedimentující při 120 000 g, mají pH optimum v mírně alkalické oblasti a Michaelisovy konstanty jsou řádově stejné (10−5 m). Inhibice ionty Zn2+, Cu2+, Hg2+, B4O7 2−, p-chlormerkutibenzoátem, jodacetátem, EDTA a fenantrolinem jsou obdobné a svědčí o přítomnosti −SH skupin. Specifická aktivita preparátu alkoholdehydrogenasy je vyšší u rostlin pěstovaných na světle než ve tmě.

Srážení síranem amonným dovolí zvýšit specifickou aktivitu rostlinných alkoholdehydrogenas maximálně o jeden řád, u obilovin se u tohoto stupně čištění aktivita ztrácí.

Elektroforesou na polyakrylamidu jsme zjistily isoenzymové složení ADH: Např. enzym z hrachu a slunečnice obsahuje 3, pšenice a oves 6 a kukuřice a ječmen 5 isoenzymů.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • App, A. A., Meiss, A. N.: Effect of aeration on rice alcohol dehydrogenase.—Arch. Biochem. Biophys.77: 181–190, 1958.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, D. C., Cossins, E. A.: Studies of intermediary metabolism in germinating pea cotyledons. The pathway of ethanol metabolism and the role of the tricarboxylic acid cycle.— Biochem. J.105: 323–331, 1967.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castelfranco, P., Bianchetti, R., Marre, E.: Difference in the metabolism fate of acetate and ethanol fed to higher plant tissues.—Nature198: 1321–1322, 1963.

    Article  CAS  PubMed  Google Scholar 

  • Cossins, E. A.: Utilisation of ethanol-2-C14 by pea slices.—Nature194: 1095–1096, 1962.

    Article  CAS  Google Scholar 

  • Cossins, E. A., Turner, E. R.: Losses of alcohol and alcohol dehydrogenase activity in germinating seeds.—Ann. Bot.26: 591–597, 1962.

    CAS  Google Scholar 

  • Cossins, E. A., Kopala, L. C., Blowacki, B., Spronk, A. M.: Some properties of higher plant alcohol dehydrogenase.—Phytochemistry7: 1125–1134, 1968.

    Article  CAS  Google Scholar 

  • Davis, J. B.: Dise electrophoresis. Method and aplication to human serum proteins.—Ann. N.Y. Acad. Sci.121: 404–427, 1964, art. 2.

    Article  CAS  PubMed  Google Scholar 

  • Duffus, J. H.: Alcohol dehydrogenase in the barley embryo.—Phytochemistry7: 1135–1137, 1968.

    Article  CAS  Google Scholar 

  • Fidler, J. C.: A comparison of anaerobic and aerobic respiration of apples.—J. exp. Bot.2: 41–64, 1951.

    Article  CAS  Google Scholar 

  • Hageman, R. H., Flesher, D.: The effect of an anaerobic environment or the activity of alcohol dehydrogenase and other enzymes of corn seedlings.—Arch. Biochem. Biophys.87: 203–209, 1960.

    Article  CAS  PubMed  Google Scholar 

  • Hais, J. E., Velick, S. F.: Yeast alcohol dehydrogenase: Molecular weight, coenzyme binding and reaction equilibria.—J. biol. Chem.207: 225–244, 1954.

    Google Scholar 

  • Kenefick, D. G.: Formation and elimination of ethanol in sugar beet roots.—Plant Physiol.37: 434–439, 1962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leblová, S., Zimáková, I., Sofrová, D., Barthová, J.: Occurence of ethanol in pea plants in the course of growth under normal and anaerobic conditions.—Biol. Plant.11: 417–423, 1969.

    Article  Google Scholar 

  • Liu, T.Y., Oppenheim, A., Castelfranco, P.: Ethylalcohol metabolism in leguminous seedlings. Plant. Physiol.40: 1261–1268, 1965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pattee, H. E., Swaisgood, H. E.: Peanut alcohol dehydrogenase. 1. Isolation and purification.— J. Food Sci.33: 250–253, 1968.

    Article  CAS  Google Scholar 

  • Peterson, C. A., Cossins, E. A.: Participation of the glyoxalate cycle in the metabolism of ethanol by Castor bean endosperm tissues.—Can. J. Biochem.44: 423–432, 1966.

    Article  CAS  PubMed  Google Scholar 

  • Philips, J. W.: Studies on fermentation in rice and barley.—Amer. J. Bot.34: 62–71, 1947.

    Article  Google Scholar 

  • Pietruzsko, R., Theorell, A.: Subunit composition of horse liver alcohol dehydrogenase.— Arch. Biochem. Biophys.131: 288–298, 1969.

    Article  Google Scholar 

  • Racker, E.: Crystaline alcohol dehydrogenase from bakers yeast.—J. biol. Chem.184: 313–319, 1950.

    CAS  PubMed  Google Scholar 

  • Siegel, S. M., Rosen, L. A.: Effect of reduced oxygen tension on germination and seedling growth.—Physiol. Plant.15: 437, 1962.

    Article  CAS  Google Scholar 

  • Sofer, W., Ursprung, H.:Drosophila alcohol dehydrogenase. Purification and partial characterisation. —J. biol. Chem.243: 3110–3115, 1968.

    CAS  PubMed  Google Scholar 

  • Suzuki, Y.: Alcohol dehydrogenase (alcohol: NAD oxidoreductase) from the pea seedling.— Phytochemistry5: 761–765, 1966.

    Article  CAS  Google Scholar 

  • Wager, H. G.: The effect of artificial wilting on the production of ethanol by ripening pea seeds.— New Phytol.58: 68–74, 1959.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Addres: Albertov 2030, Praha 2, Czechoslovakia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leblová, S., Zimáková, I., Barthová, J. et al. On plant alcohol dehydrogenases. Biol Plant 13, 33–42 (1971). https://doi.org/10.1007/BF02930744

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930744

Keywords

Navigation