Skip to main content
Log in

Cairnsian mutagenesis inEscherichia coli: Genetic evidence for two pathways regulated bymutS andmutL genes

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The phenomenon of Cairnsian mutagenesis was studied inEscherichia coli mutants bearing mutations inmutS,mutL,recA andlexA genes. It is shown that development of resistance to exogenous valine could be used as an example of Cairnsian response. Strains defective inmutS andmutL show a high frequency of Cairnsian mutagenesis to valine resistance. The response inmutS mutants is dependent upon cleavability of the LexA protein whereas that inmutL is not. The latter is independent ofrecA also. The need for LexA protein cleavage inmutS mutants can be bypassed by over-production of the RecA protein due to arecA operator constitutive mutation. Genetic evidence is presented to show that the products ofmutS andmutL genes negativelycontrol two pathways of Cairnsian mutagenesis. Cairnsian response is also elicited whenmutS ormutL strains are grown under conditions wherein a required nutrient is present in sub-optimal concentrations. Random, unselected mutagenic events are likely to occur during or after Cairnsian mutagenesis provided the cells are SOS inducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boe L. 1990 Mechanism for induction of adaptive mutations inEscherichia coli.Mol. Microbiol. 4: 597–601

    Article  PubMed  CAS  Google Scholar 

  • Cairns J. and Foster P. L. 1991 Adaptive reversion of framshift mutation inEscherichia coli.Genetics 128: 695–701

    PubMed  CAS  Google Scholar 

  • Cairns J., Overbaugh J. and Miller S. 1988 The origin of mutants.Nature (London) 335: 142–145

    Article  CAS  Google Scholar 

  • Cavalli-Sforza L. L. and Lederberg J. 1956 Isolation of preadaptive mutants in bacteria by sib selection.Genetics 41: 367–381

    PubMed  CAS  Google Scholar 

  • Clark A. J. 1982recA operator mutations and their usefulness.Biochimie 64: 669–675

    Article  PubMed  CAS  Google Scholar 

  • Davis B. D. 1989 Transcriptional bias: A non Lamarckian mechanism for substrate induced mutations.Proc. Natl. Acad. Sci. USA 86: 5005–5009

    Article  PubMed  CAS  Google Scholar 

  • Di Francesco R., Bhatnagar S. K., Brown A. and Bessman M. J. 1984 The interaction of DNA polymerase III and the product of theEscherichia coli mutator genemutD*.J. Biol. Chem. 259: 5567–5573

    Google Scholar 

  • Foster P. L. 1992 Directed mutation: Between unicorns and goats.J. Bacteriol. 174: 1711–1716

    PubMed  CAS  Google Scholar 

  • Hall B. G. 1982 A chromosomal mutation for citrate utilization byEscherichia coli K12.J. Bacteriol. 152: 269–273

    Google Scholar 

  • Hall B. G. 1988 Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence.Genetics 128: 887–897

    Google Scholar 

  • Hall B. G. 1990 Spontaneous point mutations that occur more often when advantageous than when neutral.Genetics 126: 5–16

    PubMed  CAS  Google Scholar 

  • Hall B. G. 1991a Adaptive evolution that requires multiple spontaneous mutations: Mutations involving base substitutions.Proc. Natl. Acad. Sci. USA 88: 5882–5886

    Article  PubMed  CAS  Google Scholar 

  • Hall B. G. 1991b Increased rates of advantageous mutations in response to environmental challenges.ASM News 57: 82–86

    Google Scholar 

  • Hall B. G. and Clarke N. D. 1977 Regulation of newly evolved enzymes. III. Evolution of theebg repressor.Genetics 85: 193–201

    PubMed  CAS  Google Scholar 

  • Keller E. F. 1992 Between language and science: The question of directed mutation in molecular genetics.Perspect. Biol. Med. 35: 292–306

    PubMed  CAS  Google Scholar 

  • Kogoma T. 1986 RNase H defective mutants ofEscherichia coli.J. Bacteriol. 166: 361–363

    PubMed  CAS  Google Scholar 

  • Lederberg J and Lederberg E. M. 1952 Replica plating and indirect selection of mutants.J. Bacteriol. 63: 399–406

    PubMed  CAS  Google Scholar 

  • Luria S. E. and Delbruck M. 1943 Mutations of bacteria from virus sensitivity to virus resistance.Genetics 28: 491–513

    PubMed  CAS  Google Scholar 

  • Magee T. R. and Kogoma T. 1990 Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication inEscherichia coli.J. Bacteriol. 172: 1834–1839

    PubMed  CAS  Google Scholar 

  • Markham B. E., Little J. W. and Mount D. W. 1981 Nucleotide sequence of thelexA gene ofEscherichia. coli K12.Nucleic Acids Res. 9: 4149–4161

    Article  PubMed  CAS  Google Scholar 

  • Matin A. 1991 The molecular basis of carbon starvation induced general resistance inEscherichia coli.Mol. Microbiol. 5: 3–10

    Article  PubMed  CAS  Google Scholar 

  • Mellon J. and Hanawalt P. C. 1989 Induction of theEscherichia coli lactose operon selectively increases repair of its transcribed DNA strand.Nature (London) 342: 95–98

    Article  CAS  Google Scholar 

  • Miller J. H. 1972Experiments in molecular genetics (Long Island, NY: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Mittler J. E. and Lenski R. E. 1990 New data on excisions of Mu fromE. coli MCS2 cast doubt on directed mutation hypothesis.Nature (London) 344: 173–175

    Article  CAS  Google Scholar 

  • Modrich P. 1987 DNA mismatch correction.Annu. Rev. Biochem. 56: 435–466

    Article  PubMed  CAS  Google Scholar 

  • Morand P., Blanco M and Devoret R. 1977 Characterization oflexB mutations inEscherichia coli K12.J. Bacteriol. 131: 572–582

    PubMed  CAS  Google Scholar 

  • Radman M. and Wagner R. 1986 Mismatch repair inEscherichia coli.Annu. Rev. Genet. 20: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Sassanfar M. and Roberts J. W. 1990 Nature of SOS-inducing signal inEscherichia coli: The involvement of DNA replication.J. Mol. Biol. 212: 79–96

    Article  PubMed  CAS  Google Scholar 

  • Sevestopoulos C. G. and Glaser D. A. 1977 Mutator action byEscherichia coli strains carryingdnaE mutations.Proc. Natl. Acad. Sci. USA 74: 3947–3950

    Article  Google Scholar 

  • Shapiro I. A. 1984 Observations on the formation of clones containingaraB-lacZ cistron fusions.Mol. Gen. Genet. 194: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Stahl F. W. 1988 A unicorn in the garden?Nature (London) 335: 112–113

    Article  CAS  Google Scholar 

  • Trinh T. Q. and Sinden R. R. 1991 Preferential DNA secondary structure mutagenesis in the lagging strand of replication inE. coli.Nature (London) 352: 544–547

    Article  CAS  Google Scholar 

  • Umbarger H. E. 1987 Biosynthesis of branched chain amino acids. InEscherichia coli and Salmonella typhimurium (eds) F. C. Neidhart, K. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter and H. E. Umbarger (Washington, DC: American Society for Microbiology) pp. 352–367

    Google Scholar 

  • Vinopal R. T. 1987 Selectable phenotypes. InEscherichia coli and Salmonella typhimurium (eds) F. C. Neidhart, K. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter and H. E. Umbarger (Washington, DC: American Society for Microbiology) pp. 990–1015

    Google Scholar 

  • Walker G. C. 1984 Mutagenesis and induced responses to DNA damage inEscherichia coli.Microbiol. Rev. 48: 60–93

    PubMed  CAS  Google Scholar 

  • Walker G. C. 1987 The SOS response ofE. coli. InEscherichia coli and Salmonella typhimurium (eds) F. C. Neidhart, K. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter and H. E. Umbarger (Washington, DC: American Society for Microbiology) pp. 1346–1357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of S.E. Luria

I have observed that adam13 (dam::Tn9) derivative of AB1157 is no better thandam + AB1157 in eliciting Cairnsian response. If Cairnsian response is the result of uncorrected mismatches, increasing the life span of mismatches (mutS/mutL) or correction of the wrong (parental) strand of mismatches (dam) will have the same consequence. That this is not so in Cairnsian response supports the notion outlined in this report that the role of the MutS and MutL products in Cairnsian mutagenesis is not simply to prolong the life span of mismatches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, R. Cairnsian mutagenesis inEscherichia coli: Genetic evidence for two pathways regulated bymutS andmutL genes. J. Genet. 71, 23–41 (1992). https://doi.org/10.1007/BF02927873

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02927873

Keywords

Navigation