Skip to main content

Checks and Balances with Use of the Keio Collection for Phenotype Testing

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1927))

Abstract

The Keio single gene knockout collection comprises approximately 4000 mutants of E. coli K12 strain BW25113, where each mutant contains a kanamycin resistance cassette in place of a single nonessential gene. This mutant library has proven to be incredibly useful in the fields of bacteriology, chemical genomics, biotechnology, and systems biology, which is evidenced by the greater than 3800 citations that the article describing its construction has garnered in the approximate first 11 years since its publication. Among the various applications of the collection, the most extensive use has been in the assessment of how loss of specific gene function influences phenotypes. In this chapter, we describe pitfalls with use of the collection and procedures that can be employed to ensure robust phenotype assessment of mutations in the library. These include procedures for thorough confirmation of gene deletions by PCR, phage transduction of mutated loci to new host strains, and strategies for genetic complementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. https://doi.org/10.1038/msb4100050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, Furubayashi A, Kinjyo S, Dose H, Hasegawa M, Datsenko KA, Nakayashiki T, Tomita M, Wanner BL, Mori H (2009) Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol 5:335. https://doi.org/10.1038/msb.2009.92

    Article  PubMed  PubMed Central  Google Scholar 

  4. Melnick J, Lis E, Park JH, Kinsland C, Mori H, Baba T, Perkins J, Schyns G, Vassieva O, Osterman A, Begley TP (2004) Identification of the two missing bacterial genes involved in thiamine salvage: thiamine pyrophosphokinase and thiamine kinase. J Bacteriol 186(11):3660–3662. https://doi.org/10.1128/JB.186.11.3660-3662.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalabaev S, Chauhan A, Novikov A, Iyer P, Szczesny M, Beloin C, Caroff M, Ghigo JM (2014) Biofilms formed by gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. MBio 5(4). https://doi.org/10.1128/mBio.01116-14

  6. Orman MA, Brynildsen MP (2016) Persister formation in Escherichia coli can be inhibited by treatment with nitric oxide. Free Radic Biol Med 93:145–154. https://doi.org/10.1016/j.freeradbiomed.2016.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amato SM, Brynildsen MP (2015) Persister heterogeneity arising from a single metabolic stress. Curr Biol 25(16):2090–2098. https://doi.org/10.1016/j.cub.2015.06.034

    Article  CAS  PubMed  Google Scholar 

  8. Amato SM, Brynildsen MP (2014) Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One 9(3):e93110. https://doi.org/10.1371/journal.pone.0093110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tamae C, Liu A, Kim K, Sitz D, Hong J, Becket E, Bui A, Solaimani P, Tran KP, Yang H, Miller JH (2008) Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol 190(17):5981–5988. https://doi.org/10.1128/JB.01982-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niba ET, Naka Y, Nagase M, Mori H, Kitakawa M (2007) A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14(6):237–246. https://doi.org/10.1093/dnares/dsm024

    Article  CAS  PubMed  Google Scholar 

  11. Hansen S, Lewis K, Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8):2718–2726. https://doi.org/10.1128/AAC.00144-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donath MJ 2nd, Dominguez MA, Withers ST 3rd (2011) Development of an automated platform for high-throughput P1-phage transduction of Escherichia coli. J Lab Autom 16(2):141–147. https://doi.org/10.1016/j.jala.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  13. Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G 3rd, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Res 34(1):1–9. https://doi.org/10.1093/nar/gkj405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Snyder L, Snyder L (2013) Molecular genetics of bacteria, 4th edn. ASM Press, Washington, DC

    Google Scholar 

  15. Thierauf A, Perez G, Maloy AS (2009) Generalized transduction. Methods Mol Biol 501:267–286. https://doi.org/10.1007/978-1-60327-164-6_23

    Article  CAS  PubMed  Google Scholar 

  16. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810. https://doi.org/10.1016/j.cell.2007.06.049

    Article  CAS  PubMed  Google Scholar 

  17. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3(8):623–628. https://doi.org/10.1038/nmeth895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R21AI115075. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Brynildsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aedo, S.J., Ma, H.R., Brynildsen, M.P. (2019). Checks and Balances with Use of the Keio Collection for Phenotype Testing. In: Santos, C., Ajikumar, P. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 1927. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9142-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9142-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9141-9

  • Online ISBN: 978-1-4939-9142-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics