Skip to main content
Log in

Radionuclide quantitation of renal function

  • Published:
Urologic radiology

Abstract

Quantitation of renal function may be performed with a variety of radiopharmaceuticals which reflect slightly different renal functions. Plasma sampling techniques and imaging techniques have been used to derive absolute measurements of renal function. The addition of imaging permits the determination of relative or “split” function. Time-activity curves from renal studies provide other quantitative parameters of function reflecting arterial supply, renal cortical function, and patency of the renal collecting system. Quantitative radionuclide studies of the kidneys provide comprehensive, reproducible, and objective assessments of renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor AT: Quantitative renal function scanning: A historical and current status report on renal radiopharmaceuticals. In Freeman LM, Weissman HS (eds):Nuclear Medicine Annual 1980. New York: Raven Press, 1980, pp 303–340

    Google Scholar 

  2. Stadalnick RC, Vogel JM, Jansholt A-L,et al.: Renal clearance and extraction parameters of ortho-iodohippurate (I-123) compared with OIH (I-131) and PAH.J Nucl Med 21:168–170, 1980

    Google Scholar 

  3. McAfee JG, Grossman ZD, Gagne GR,et al.: Comparison of renal extraction efficiencies for radioactive agents in the normal dog.J Nucl Med 22:333–338, 1981

    CAS  PubMed  Google Scholar 

  4. Eshima D, Taylor A Jr, Fritzberg AR,et al.: Animal evaluation of Tc-99m triamide mercaptide complexes as potential renal imaging agents.J Nucl Med 28:1180–1186, 1987

    CAS  PubMed  Google Scholar 

  5. Taylor A, Eshima D: Effects of altered biochemical and physiologic states on the clearance and biodistribution of technetium-99m MAG3, iodine-131 OIH and iodine-125 iothalamate.J Nucl Med 29:669–675, 1988

    PubMed  Google Scholar 

  6. Short MD, Glass HI, Chisholm GD, Vernon P, Sivester DJ: Gamma-camera renography using 123I-hippuran.Br J Radiol 46:289–294, 1973

    CAS  PubMed  Google Scholar 

  7. Barbour GL, Crumb CK, Boyd CM, Reeves RD, Rastogi SP, Patterson RM: Comparison of inulin, iothalamate, and 99mTc-DTPA for measurement of glomerular filtration rate.J Nucl Med 17:317–320, 1976

    CAS  PubMed  Google Scholar 

  8. Klopper JF, Hauser W, Atckins HL, Eckelman WC, Richards P: Evaluation of 99mTc-DTPA for the measurement of glomerular filtration rate.J Nucl Med 8:77–85, 1972

    Google Scholar 

  9. Nielsen SP, Møller ML, Trap-Jensen J: 99m Tc-DTPA scintillation camera renography: A new method for estimation of single kidney function.J Nucl Med 18:112–117, 1977

    CAS  PubMed  Google Scholar 

  10. Stabin M. Taylor A, Eshima D, Wooter W: Radiation dosimetry for technetium-99m-MAG3, technetium-99m DTPA, and iodine-131-OIH based on human biodistribution studies.J Nucl Med 33:33–40, 1992

    CAS  PubMed  Google Scholar 

  11. Davison A, Jones A, Orvig C, Sohn M: A new class of oxotechnetium (+5) chelate complexes containing a TcON2S2 core.Inorg Chem 20:1629–1632, 1979

    Article  Google Scholar 

  12. Fritzberg AR, Klingensmith WS, Whitney WP, Kuni CC: Chemical and biological studies of Tc-99m N, N′-bis(mercaptoacetamido)ethylenediamine: A potential replacement for I-131 hippuran.J Nucl Med 22:258–263, 1981

    CAS  PubMed  Google Scholar 

  13. Fritzberg AR, Kuni CC, Klingensmith WC, Stevens J, Whitney WP: Synthesis and biological evaluation of Tc-99m N,N′-bis (mercaptoacetyl) 2,3-diaminopropanoate: A potential replacement for I-131 o-iodohippurate.J Nucl Med 23:592–598, 1982

    CAS  PubMed  Google Scholar 

  14. Fritzberg AR, Kasina S, Eshima D,et al.: Evaluation of a new Tc-99m renal imaging agent, Tc-99m mercaptoacetylglycine (MAG3) as a hippuran replacement.J Nucl Med 27:111–116, 1986

    CAS  PubMed  Google Scholar 

  15. Taylor AT, Eshima D, Fritzberg AR,et al.: Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers.J Nucl Med 27:795–803, 1986

    PubMed  Google Scholar 

  16. Bubeck B, Brandau W, Dreikorn K,et al.: Clinical comparison of I-131 o-iodohippurate with Tc-99m Co2-DADS-A and Tc-99m MAG3 by simultaneous double tracer measurement.Nucl Compact 17:135–138, 1986

    Google Scholar 

  17. Al-Nahhas AA, Jafri RA, Britton KE,et al.: Clinical experience with99mTc-MAG3, mercaptoacetyltriglycine, and a comparison with99mTc-DTPA.Eur J Nucl Med 14:453–462, 1988

    Article  CAS  PubMed  Google Scholar 

  18. Taylor AT, Eshima D, Christian PE, Milton W: Evaluation of Tc-99m mercaptoacetyltriglycine in patients with impaired renal function.Radiology 162:365–370, 1987

    PubMed  Google Scholar 

  19. DuCret RP, Boudreau RJ, Gonzalez R, Carpenter R, Tennison J, Kuni CC: Clinical efficacy of 99m technetium mercaptoacetylglycine kit formulatin in routine renal scintigraphy.J Urol 142:19–22, 1989

    CAS  PubMed  Google Scholar 

  20. Taylor AT, Ziffer JA, Eshima D: Comparison of Tc-99m MAG3 and Tc-99m DTPA in renal transplant patients with impaired renal function.Clin Nucl Med 15:371–378, 1990

    Article  PubMed  Google Scholar 

  21. Arnold RW, Subramanian G, McAfie JG,et al.: Comparison of 99mTc complexes for renal imaging.J Nucl Med 16:357–367, 1975

    CAS  PubMed  Google Scholar 

  22. Taylor AT, Lallone RL, Hogan PL: Optimal handling of dimercaptosuccinic acid for quantitative renal scanning.J Nucl Med 21:1190–1193, 1980

    CAS  PubMed  Google Scholar 

  23. Kagan BA, Kay R, Wasnick RJ, Carty H: 99mTc-DMSA scanning to diagnose pyelonephritic scarring in children.Urology 21:641–644, 1983

    Article  Google Scholar 

  24. Daly MJ, Jones W, Rudd TG, Tremann J: Differential renal function using technetium-99m dimercaptosuccinic acid (DMSA): In vitro correlation.J Nucl Med 20:63–66, 1979

    CAS  PubMed  Google Scholar 

  25. McDougal WS, Flanigan RC: Renal functional recovery of the hydronephrotic kidney predicted before relief of obstruction.Invest Urol 18:440–442, 1981

    CAS  PubMed  Google Scholar 

  26. Beekhuis H, van Luyk WHJ, Piers DA: Differential renal function using technetium-99m dimercaptosuccinic acid (DMSA), in vivo correlation [letter].J Nucl Med 20:898–899, 1979

    CAS  PubMed  Google Scholar 

  27. Daly MJ, Milutnovic J, Rudd TG,et al.: The normal 99mTc-DMSA renal image.Radiology 128:701–704, 1978

    CAS  PubMed  Google Scholar 

  28. Lee HB, Blaufox MD: Tc-99m glucoheptonate (GHA) renal uptake: Influence of biochemical and physiological factors [abstract].J Nucl Med 25:75, 1984

    Google Scholar 

  29. Vanlic-Razumenic N, Malaxevic M, Stafanovic L: Comparative chemical, biological and clinical studies of 99m Tc-glucoheptonate and 99m Tc-dimercaptosuccinate as used in renal scintigraphy.Nuklearmedizin 18:40–46, 1979

    CAS  PubMed  Google Scholar 

  30. Ziessman HA, Balseiro J, Fahey FH, Vasshe T, Dubiansky V: 99mTc-glucoheptonate for quantitation of differential renal function.AJR 148:889–893, 1987

    CAS  PubMed  Google Scholar 

  31. Hurwitz GA, Powe JE, Mattor AG, Reed RH, Dreedger AH, Rendak I, Hagendoom P: Differential renal uptake of 201TL: Requirements for acquisition, display and quantification.Nucl Med Commun 12:885–899, 1991

    Article  CAS  PubMed  Google Scholar 

  32. Taylor A Jr, Ziffer JA, Steves A, Eshima D, Delaney VB, Welchel JD: Clinical comparison of I-131 orthoiodohippurate and the kit formulation of Tc-99m mercaptoacetyltriglycine.J Nucl Med 170:121–125, 1989

    Google Scholar 

  33. Garnett ES, Parsons V, Verall N: Measurement of glomerular filtration-rate in man using a51Cr/edetic-acid complex.Lancet 1:818–819, 1967

    Article  CAS  PubMed  Google Scholar 

  34. Burbank MK, Tauxe WN, Maher FT, Hunt JC: Evaluation of radioiodinated hippuran for the estimation of renal plasma flow.Proc Staff Meet Mayo Clin 36:372–386, 1961

    CAS  PubMed  Google Scholar 

  35. Tauxe WN, Dubovsky EV, Kidd T Jr., Diaz F, Smith L: New formulas for the calculation of effective renal plasma flow.Eur J Nucl Med 7:51–54, 1982

    CAS  PubMed  Google Scholar 

  36. Sapirstein LA: Volume of distribution and clearance of intravenously injected creatinine in the dog.Am J Physiol 181:330–335, 1955

    CAS  PubMed  Google Scholar 

  37. Balachandran S, Toguri AG, Petrusick TW, Abbott LC: Comparative evaluation of quantitative glomerular filtration rate measured by isotopic and nonisotopic methods.Clin Nucl Med 6:150–153, 1981

    Article  CAS  PubMed  Google Scholar 

  38. Smart R, Trew P, Burke J, Lyons N: Simplified estimation of glomerular filtration rate and effective renal plasma flow.Eur J Nucl Med 6:249–253, 1981

    Article  CAS  PubMed  Google Scholar 

  39. Russell CD, Taylor A, Eshima D: Estimation of technetium-99m-MAG3 plasma clearance in adults from one or two blood samples.J Nucl Med 30:1955–1959, 1989

    CAS  PubMed  Google Scholar 

  40. Russell CD, Dubovsky EV, Scott JW: Estimation of ERPF in adults from plasma clearance of I-131-hippuran using a single injection and one or two blood samples.Nucl Med Biol 16:381–383, 1989

    CAS  Google Scholar 

  41. Taylor AT, Ziffer JA, Steves A, Eshima D, Delaney VB, Welchel JD: Clinical comparison of131I orthoiodohippurate and the kit formation of Tc-99m mercaptoacetyltriglycine.Radiology 170:721–725, 1989

    PubMed  Google Scholar 

  42. Russell CD, Bischoff PG, Kontzen F,et al.: Measurement of glomerular filtration rate by the single injection method plasma clearance with urein collection: A comparison of single sample, double sample, and multiple sample methods using Tc-99m-DTPA and Yb-169-DTPA.J Nucl Med 26:1243–1247, 1985

    CAS  PubMed  Google Scholar 

  43. Gates GF: Glomerular filtration rate: Estimation from fractional renal accumulation of99mTc-DTPA (stannous).AJR 138:565–570, 1982

    CAS  PubMed  Google Scholar 

  44. Tonnesen KH, Munck O, Hald T, Mogensen P, Wolf H: Influence on the renogram of variation in skin to kidney distance and the clinical importance thereof. Presented at the International Symposium on Radionuclides in Nephrology. Berlin, April 1974 (cited by Schlegel JU, Hamway SA: Individual renal plasma flow determination in 2 minutes.J Urol 116:282–285, 1976)

    Google Scholar 

  45. Enlander D, Weber PM, Dos Remedios LV: Renal cortical imaging in 35 patients: Superior quality with 99mTc-DMSA.J Nucl Med 15:743–749, 1975

    Google Scholar 

  46. Daly MJ, Jones W, Rudd TG, Tremann J: Differential renal function using technetium-99m dimercaptosuccinic acid (DMSA): In vitro correlation.J Nucl Med 20:63–66, 1979

    CAS  PubMed  Google Scholar 

  47. Taylor A Jr, Lallone RL, Hagan PL: Optimal handling of dimercaptosuccinic acid for quantitative renal scanning.J Nucl Med 21:1190–1193, 1980

    CAS  PubMed  Google Scholar 

  48. Kawamura J, Hosokawa S, Yoshida O: Renal function studies using99mTc-dimercaptosuccinic acid.Clin Nucl Med 4:39–46, 1979

    Article  CAS  PubMed  Google Scholar 

  49. Tauxe WN, Burke EC: Kidney depth and isotope renography.J Nucl Med 9:225, 1968

    CAS  PubMed  Google Scholar 

  50. Gordon I, Anderson PJ, Orton M, Evans K: Estimation of technetium-99m-MAG3 renal clearance in children: Two gamma camera techniques compared with multiple plasma samples.J Nucl Med 32:1704–1708, 1991

    CAS  PubMed  Google Scholar 

  51. Rutland MD: A comprehensive analysis of renal DTPA studies. Theory and normal values.Nucl Med Commun 6:11–20, 1985

    Article  CAS  PubMed  Google Scholar 

  52. Gordon I, Evans K, Peters AM, Kelly J, Morales BN, Goldraich N, Yau A: The quantitation of99mTc-DMSA in pediatrics.Nucl Med Commun 8:661–670, 1987

    Article  CAS  PubMed  Google Scholar 

  53. Russell CD, Thorstad BL, Stutzman ME, Yester MV, Fowler D, Dubovsky EV: The kidney: Imaging with Tc-99m mercaptoacetyl trylycine, a technetium labeled analog of iodohippurate.Radiology 172:427–430, 1989

    CAS  PubMed  Google Scholar 

  54. Fill H, Spielberger M, Leidlmair K, Klima G: Nephrography with radioactive hippuran in transplanted kidneys: Interpretation, limitations, usefulness.Eur J Nucl Med 11:171–178, 1985

    Article  CAS  PubMed  Google Scholar 

  55. Britton K: Radionuclides in renal imaging.Br J Hosp Med 27:140–146, 1978

    Google Scholar 

  56. Ford K, Harris CC, Coleman RE, Dunnick NR: The radionuclide renogram as a predictor of relative renal blood flow.Radiology 149:819–821, 1983

    CAS  PubMed  Google Scholar 

  57. Secker-Walker RH, Coleman RE: Estimating relative renal function.J Urol 115:621–625, 1976

    CAS  PubMed  Google Scholar 

  58. Taplin, GV, Dore EK, Johnson DE: The quantitative radiorenogram for total and differential renal blood flow measurement.J Nucl Med 4:404, 1963

    CAS  PubMed  Google Scholar 

  59. Bueschen AJ, Lloyd LK, Dubovsky EV, Tauxe WN: Radionuclide kidney function evaluation in the management of urolithiasis.J Urol 120:16–20, 1978

    CAS  PubMed  Google Scholar 

  60. Macleod MA, Houston AS: A comparison of three methods of assessing renal function.Eur J Nucl Med 6:183–189, 1981

    Article  CAS  PubMed  Google Scholar 

  61. Kainer G, McIlveen B, Höschl R, Rosenberg AR: Assessment of individual renal function in children using 99m Tc-DTPA.Arch Dis Child 54:931–936, 1979

    CAS  PubMed  Google Scholar 

  62. Diffey BL, Hall FM, Corfield JR: The 99m TcDTPA dynamic renal scan with deconvolution analysis.J Nucl Med 17:352–355, 1976

    CAS  PubMed  Google Scholar 

  63. Kenny RW, Ackery DM, Fleming JS,et al.: Deconvolution analysis of the scintillation camera renogram.Br J Radiol 48:481–486, 1975

    Article  CAS  PubMed  Google Scholar 

  64. Buck AC, Macleod MA, Blacklock NJ: The advantages of 99m Tc DTPA(Sn) in dynamic renal scintigraphy and measurement of renal function.Br J Urol 52:174–186, 1980

    CAS  PubMed  Google Scholar 

  65. Britton KE, Nimmon CC, Whitfield HN, Fry IK, Hendry WF, Wickham JEA: Obstructive nephropathy: Successful evaluation with radionuclides.Lancet 1:905–906, 1979

    Article  CAS  PubMed  Google Scholar 

  66. Tveter KJ, Nerdrum HJ, Mjolnerod OK: The value of radioisotope renography in the follow-up of patients operated upon for hydronephrosis.J Urol 114:680, 1975

    CAS  PubMed  Google Scholar 

  67. Dubovsky EV,et al.: Comprehensive evaluation of renal function in the transplanted kidney.J Nucl Med 16:1115, 1975

    CAS  PubMed  Google Scholar 

  68. Whitfield HN,et al.: Furosemide intravenous urography in the diagnosis of pelvic-ureteric junction obstruction.Br J Urol 51:445, 1979

    CAS  PubMed  Google Scholar 

  69. Roedler HD, Kaul A, Hine GJ:Internal Radiation Dose in Diagnostic Nuclear Medicine. Berlin: Verlag H. Hoffman, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanger, J.J., Lipcon Kramer, E. Radionuclide quantitation of renal function. Urol Radiol 14, 69–78 (1992). https://doi.org/10.1007/BF02926907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02926907

Key words

Navigation