Skip to main content
Log in

Quantitative trace element analysis of human nails with external beam PIXE

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

External beam PIXE (Particle Induced X-ray Emission) analysis with a proton beam of 2.4 MeV was used to study trace element concentrations in human nails. The suitability of PIXE analysis regarding nail samples without any pretreatment besides washing was investigated. The main emphasis has been on the ability to obtain absolute concentration values and a new accurate method for nail sample standardization has been developed. Concentration values for the elements Ca, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Pb were determined from human nail samples. A comparison was made with nail samples taken from different fingers and toes to monitor intraindividual variation, and nails of different healthy individuals to get a view of the interindividual differences. The concentrations were also measured in relation to time in order to observe any possible short-term changes. The results are compared with the previous studies reported in the literature. The nail analysis is also compared to hair analysis in terms of detection limits, number of elements determinable, and standardization of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Valkovic and N. Limic,Nucl. Instr. and Meth. B22, 159 (1987).

    CAS  Google Scholar 

  2. H. C. Hopps,Sci. Total Environ. 7, 71 (1977).

    Article  PubMed  CAS  Google Scholar 

  3. E. T. Williams,Nucl. Instr. and Meth. B3, 211 (1984).

    Google Scholar 

  4. Proc. III Int. Conf. on PIXE and its Analytical Applications,Nucl. Instr. and Meth. B3, 319–397 (1984).

    Google Scholar 

  5. Proc. IV Int. Conf. on PIXE and its Analytical Applications,Nucl. Instr. and Meth. B22, 138–234 (1987).

    Google Scholar 

  6. A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler,Nucl. Instr. and Meth. B3, 352 (1984).

    Google Scholar 

  7. S. K. Biswas, M. Abdullah, S. Akhter, S. A. Tarafdar, M. Khaliquzzaman, and A. H. Khan,f. Radioanal Nucl. Chem. 82, 111 (1984).

    Article  CAS  Google Scholar 

  8. A. Anttila, J. Räisänen, and R. Lappalainen,Nucl Instr. and Meth. B12, 245 (1985).

    CAS  Google Scholar 

  9. J. Räisänen and A. Anttila,Nucl Instr. and Meth. 196, 489 (1982).

    Article  Google Scholar 

  10. W. W. Harrison and A. B. Tyree,Clin. Chim. Acta. 31, 63 (1971).

    Article  PubMed  CAS  Google Scholar 

  11. O. D. Vellar,Am. J. Clin. Nutr. 23, 1272 (1970).

    PubMed  CAS  Google Scholar 

  12. V. Järvinen, A. Anttila, R. Lappalainen, and I. Rytömaa,Scand. J. Work Environ. Health 10, 103 (1984).

    PubMed  Google Scholar 

  13. K. Haavikko, A. Anttila, A. Helle, and E. Vuori,Arch. Environ. Health 39, 78 (1984).

    PubMed  CAS  Google Scholar 

  14. M. Mutanen and P. Koivistoinen,Int. J. Vitam. Nutr. Res. 53, 34 (1983).

    Google Scholar 

  15. A. J. J. Bos, R. D. Vis, H. Verheul, M. Prins, S. T. Davies, D. K. Bowen, J. Makjanic, and V. Valkovic,Nucl. Instr. and Meth. B3, 232 (1984).

    Google Scholar 

  16. P. J. Leonard, W. P. Morris, and R. Brown,Biochem. J. 110, 22p (1968).

    Google Scholar 

  17. E. Kanabrocki, L. F. Case, L. A. Graham, T. Fields, Y. T. Oester, and E. Kaplan,J. Nucl Med. 9, 478 (1968).

    PubMed  CAS  Google Scholar 

  18. P. Lim, B. S. Tay, and I. K. Tan,Clin. Chim. Acta 42, 47 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. A. A. Petushkov, D. M. Linekin, J. F. Balcius, and G. L. Brownell,J. Nucl Med. 10, 730 (1969).

    PubMed  CAS  Google Scholar 

  20. G. M. Martin,Nature 202, 903 (1964).

    Article  PubMed  CAS  Google Scholar 

  21. W. W. Harrison and G. G. Clemena,Clin. Chim. Acta 36, 485 (1972).

    Article  PubMed  CAS  Google Scholar 

  22. W. B. Barnett and H. L. Kahn,Clin. Chem. 18, 923 (1972).

    PubMed  CAS  Google Scholar 

  23. D. M. Hadjimarkos and T. R. Shrearer,J. Dent. Res. 52, 389 (1973).

    PubMed  CAS  Google Scholar 

  24. G. C. Cotzias, P. S. Papavasilou, and S. T. Miller,Nature 201, 1228 (1964).

    Article  PubMed  CAS  Google Scholar 

  25. I. Otham and N. M. Spyrou, inNuclear Activation Techniques in the Life Sciences, IAEA, Vienna, p. 583.

  26. G. V. Iyengar, W. E. Kollmer, H. J. M. Bowen,The Elemental Composition of Human Tissues and Body Fluids, Verlag Chemie, Weinheim, FRG, 1978.

    Google Scholar 

  27. G. C. Battistone, E. Levri, and R. Lofberg,Clin. Chim. Acta 30, 429 (1970).

    Article  PubMed  CAS  Google Scholar 

  28. P. S. I. Barry and D. B. Mossman,Brit. J. Industr. Med. 27, 339 (1970).

    PubMed  CAS  Google Scholar 

  29. B. Morsches and G. Tölg,Z. Anal Chem. 250, 81 (1970).

    Article  CAS  Google Scholar 

  30. K. Liebscher and H. Smith,Arch. Environ. Health 17, 881 (1968).

    PubMed  CAS  Google Scholar 

  31. D. J. Mahler, A. F. Scott, J. R. Walsh, and G. Haynie,J. Nucl. Med. 11, 739 (1970).

    PubMed  CAS  Google Scholar 

  32. W. Goldblum, S. Derbey, and A. B. Lerner,J. Invest. Dermat. 20, 13 (1953).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapatto, R., Hietamäki, A. & Räisänen, J. Quantitative trace element analysis of human nails with external beam PIXE. Biol Trace Elem Res 19, 161–170 (1989). https://doi.org/10.1007/BF02924293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02924293

Index Entries

Navigation