Skip to main content
Log in

Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group ℍn

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article we study sets in the (2n + 1)-dimensional Heisenberg groupn which are critical points, under a volume constraint, of the sub-Riemannian perimeter associated to the distribution of horizontal vector fields inn.We define a notion of mean curvature for hypersurfaces and we show that the boundary of a stationary set is a constant mean curvature (CMC) hypersurface. Our definition coincides with previous ones.

Our main result describes which are the CMC hypersurfaces of revolution inn.The fact that such a hypersurface is invariant under a compact group of rotations allows us to reduce the CMC partial differential equation to a system of ordinary differential equations. The analysis of the solutions leads us to establish a counterpart in the Heisenberg group of the Delaunay classification of constant mean curvature hypersurfaces of revolution in the Euclidean space. Hence, we classify the rotationally invariant isoperimetric sets inn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh, Z.M. Size of characteristic sets and functions with prescribed gradient,J. Reine Angew. Math. 564, 63–83, (2003).

    MATH  MathSciNet  Google Scholar 

  2. Barbosa, J.L., do Carmo, M., and Eschenburg, J. Stability of hypersurfaces of constant mean curvature in Riemannian manifolds,Math. Z. 197(1), 123–138, (1988).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonk, M. and Capogna, L. Horizontal mean curvature flow in the Heisenberg group, in preparation.

  4. Capogna, L., Danielli, D., and Garofalo, N. An isoperimetric inequality and the geometric Sobolev embedding for vector fields,Math. Res. Lett. 1(2), 203–215, (1994).

    MathSciNet  Google Scholar 

  5. Cheng, J.-H. and Hwang, J.-F. Properly embedded and immersed minimal surfaces in the Heisenberg group,Bull. Austral. Math. Soc. 70(3), 507–520, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheng, J.-H., Hwang, J.-F., Malchiodi, A., and Yang, P. Minimal surfaces in pseudohermitian geometry,Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(1), 129–177, (2005).

    MATH  MathSciNet  Google Scholar 

  7. Cheng, J.-H., Hwang, J.-F., and Yang, P. Existence and uniqueness for p-area minimizers in the Heisenberg group, arXiv:math.DG/0601208.

  8. Danielli, D., Garofalo, N., andNhieu, D.-M. Minimal surfaces, surfaces of constant mean curvature and isoperimetry in sub-Riemannian groups, preprint, (2004).

  9. Delaunay, C. Sur la surface of revolution dont la courbure moyenne est constante,J. Math. Pure Appl. 16, 309–321, (1841).

    Google Scholar 

  10. Derridj, M. Sur un thórème de traces,Ann. Inst. Fourier (Grenoble) 22(2), 73–83, (1972).

    MathSciNet  Google Scholar 

  11. Figueroa, C.B., Mercuri, F., and Pedrosa, R.N.L. Invariant surfaces of the Heisenberg groups,Ann. Mat. Pura Appl. (4) 177, 173–194, (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. Franchi, B., Serapioni, R.,and Serra Cassano, F. Rectifiability and perimeter in the Heisenberg group,Math. Ann. 321(3), 479–531, (2001).

    Article  MATH  MathSciNet  Google Scholar 

  13. Garofalo, N. and Pauls, S. The Bernstein problem in the Heisenberg group, preprint, (2004).

  14. Giaquinta, M. and Hildebrandt, S.Calculus of Variations I, II, Grundlehren der Mathematischen Wissenschaften,310, 311, Springer-Verlag, Berlin, (1996).

    Google Scholar 

  15. Gromov, M.Structures Métriques pour les Variétés Riemanniennes, Vol. 1 of Textes Mathématiques, CEDIC, Paris, (1981).

    MATH  Google Scholar 

  16. Gromov, M. Camot-Carathéodory spaces seen from within sub-riemannian geometry,Prog. Math. 144, Birkhäuser, Basel, 79–323, (1996).

    Google Scholar 

  17. Hladky, R.K. and Pauls, S. Constant mean curvature surfaces in sub-Riemannian geometry, arXiv:math.DG/059636.

  18. Hsiang, W.-Y. On generalization of theorems of A.D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature,Duke Math. J. 49(3), 485–496, (1982).

    Article  MATH  MathSciNet  Google Scholar 

  19. Korevaar, N.J., Kusner, R., and Solomon, B. The structure of complete embedded surfaces with constant mean curvature,J. Differential Geom. 30(2), 465–503, (1989).

    MATH  MathSciNet  Google Scholar 

  20. Leonardi, G.P. and Masnou, S. On the isoperimetric problem in the Heisenberg group ℍn,Ann. Mat. Pura Appl. (4) 184(4), 533–553, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  21. Leonardi, G.P. and Rigot, S. Isoperimetric sets on Carnot groups,Houston J. Math. 29(3), 609–637, (electronic), (2003).

    MATH  MathSciNet  Google Scholar 

  22. Monti, R. Brunn-Minkowski and isoperimetric inequality in the Heisenberg group,Ann. Acad. Sci. Fenn. Math. 28(1), 99–109, (2003).

    MATH  MathSciNet  Google Scholar 

  23. Monti, R. and Serra Cassano, F. Surface measures in Carnot-Carathéodory spaces,Calc. Van 13, 339–376, (2001).

    Article  MATH  MathSciNet  Google Scholar 

  24. Ni, Y. Sub-Riemannian constant mean curvature surfaces in the Heisenberg group as limits,Ann. Mat. Pura Appl. (4) 183(4), 555–570, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  25. Pansu, P. Une inégalité isopérimétrique sur le groupe de Heisenberg,C.R. Acad. Sci. Paris Sér. I Math. 295(2), 127–130, (1982).

    MATH  MathSciNet  Google Scholar 

  26. Pansu, P. An isoperimetric inequality on the Heisenberg group,Rend. Sem. Mat. Univ. Politec. Torino Special Issue (1983), 159–174, Conference on differential geometry on homogeneous spaces (Turin, 1983), (1984).

  27. Pansu, P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,Ann. of Math. (2) 129(1), 1–60, (1989).

    Article  MathSciNet  Google Scholar 

  28. Pauls, S.D. Minimal surfaces in the Heisenberg group,Geom. Dedicata 104, 201–231, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  29. Tomter, P. Constant mean curvature surfaces in the Heisenberg group,Proc. Sympos. Pure Math. 54, 485–495, (1993).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ritoré.

Additional information

Communicated by Fulvio Ricci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritoré, M., Rosales, C. Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group ℍn . J Geom Anal 16, 703–720 (2006). https://doi.org/10.1007/BF02922137

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922137

Math Subject Classifications

Key Words and Phrases

Navigation