Skip to main content
Log in

Production of exocellular polysaccharide by azotobacter chroococcwn

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Environmental conditions affect the production of extracellular polysaccharide byAzotobacter chroococcum ATCC 4412. Production of exocellular polymer from a variety of carbon sources depended on the air flow rate. A high sucrose concentration in medium (8%) markedly favored exopolysaccharide production, which reached 14 g/L in about 72 h. In cell suspensions incubated in the presence of 8% sucrose in a nitrogen-free medium, biopolymer final concentration of 9 g/L corresponds to 68 g/g biomass. Maximum efficiency of sucrose conversion into exopolysaccharide peaked at 70% for initial disaccharide concentration of 6%. High performance liquid chromatography and gas liquid chromatography of acid hydrolysates of the exopolymer revealed the presence of mannuronosyl, guluronosyl, and acetyl residues, but not neutral sugars. The infrared spectrum corroborated the presence of carboxylate anions and O-acetyl groups in the exopolymer. Though the presence of more than one kind of polysaccharide cannot be ruled out, these data suggest that, under the experimental conditions used in this work, only a type of alginate-like exopolysaccharide is produced byA. chroococcum ATCC 4412.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutherland, I. W. (1985),Ann. Rev. Microbiol. 39, 243–270.

    Article  CAS  Google Scholar 

  2. Sandford, P. A., Cottrell, I. W., and Pettitt, D. J. (1984),Pure Appl. Chem. 56, 879–892.

    Article  CAS  Google Scholar 

  3. Sutherland, I. W. (1986),Microbiol. Sci. 3, 5–8.

    CAS  Google Scholar 

  4. Evans, L. R. and Linker, A. (1973),J. Bacterial. 116, 915–924.

    CAS  Google Scholar 

  5. Deretic, V., Gill, J. F., and Chakrabarty, A. M. (1987),Biotechnology 5, 469–477.

    Article  CAS  Google Scholar 

  6. Chen, W-P., Chen, J-Y., Chang, S-C., and Su, C-L. (1985),Appl. Environm. Microbiol 49, 543–546.

    CAS  Google Scholar 

  7. Lawson, G. L. and Stacey, M. (1954),J. Chem. Soc. (London) p. 1925–1931.

  8. Cote, G. L. and Krull, L. H. (1988),Carbohydr. Res. 181, 143–152.

    Article  CAS  Google Scholar 

  9. Cejudo, F. J. and Paneque A. (1988),Arch. Microbiol. 149, 481–484.

    Article  CAS  Google Scholar 

  10. Brivonese, A. C. and Sutherland, I. W. (1989),Appl. Microbiol. Biotechnol. 30, 97–102.

    Article  CAS  Google Scholar 

  11. Paneque, A., de la Vega, M. G., and Cejudo, F. J. (1988),Second Spanish Conference on Biotechnology, Abstracts, p. 277.

  12. Cejudo, F. J., de la Torre, A., and Paneque, A. (1984),Biochem. Biophys. Res. Commun. 123, 431–437.

    Article  CAS  Google Scholar 

  13. Blackeny, A. B., Harris, P. J., Henry, R. J., and Stone, B. A. (1983),Carbohydr. Res. 113, 291–293.

    Article  Google Scholar 

  14. Taylor, R. L. and Conrad, H. E. (1972),Biochemistry 11, 1383–1388.

    Article  CAS  Google Scholar 

  15. Bergmeyer, H. U. and Bernt, E. (1974),Methods of Enzymatic Analysis, Academic, New York and London, pp. 1176 and 1221.

    Google Scholar 

  16. De la Vega, M. G., Cejudo, F. J., and Paneque, A. (1991),Enzyme Microb. Technol. 13, 267–271.

    Article  Google Scholar 

  17. Okabe, E., Nakajima, M., Murooka, H., and Nisizawa, K. (1981),J. Ferment. Technol. 59, 1–7.

    CAS  Google Scholar 

  18. Antón, J., Meseguer, I., and Rodríguez-Valera, F. (1988),Appl. Environm. Microbiol. 54, 2381–2386.

    Google Scholar 

  19. Horan, N. J., Jarman, T. R., and Dawes, E. A. (1981),J. Gen. Microbiol. 127, 185–191.

    CAS  Google Scholar 

  20. Deavin, L., Jarman, T. R., Lawson, C. J., Righelato, R. C., and Slocombe, S. (1977), inExtracellular Microbial Polysaccharides, Sandford, P. A. and Laskin, A., eds., American Chemical Society, Washington, pp. 14–26.

    Google Scholar 

  21. Hacking, A. J., Taylor, I. W. F., Jarman, T. R., and Govan, J. R. W. (1983),J. Gen. Microbiol. 129, 3473–3480.

    CAS  Google Scholar 

  22. Sutherland, I. W. (1977), inExtracellular Microbial Polysaccharides, Sandford, P. A. and Laskin, A., eds., American Chemical Society, Washington, pp. 40–57.

    Google Scholar 

  23. Jarman, T. R., Deavin, L., Slocombe, S., and Righelato, R. C. (1978),J. Gen. Microbiol. 107, 59–64.

    CAS  Google Scholar 

  24. Williams, A. G. and Wimpenny, J. W. T. (1977),J. Gen. Microbiol. 102, 13–21.

    CAS  Google Scholar 

  25. Cohen, G. H. and Johnstone, D. B. (1964),J. Bacteriol. 88, 329–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De La Vega, M.G., Cejudo, F.J. & Paneque, A. Production of exocellular polysaccharide by azotobacter chroococcwn. Appl Biochem Biotechnol 30, 273–284 (1991). https://doi.org/10.1007/BF02922031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922031

Index Entries

Navigation