Skip to main content
Log in

Microbial conversion of 4-oxoisophorone by thermomonospora curvata using an air-bubbling hollow fiber reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial conversion of 4-oxoisophorone (OIP) by thermophilic bacteriumThermomonospora curvata was attempted in a continuous process.

The correlation between cell growth and microbial conversion was first examined in a batch culture. The results indicated that this microbial conversion was strongly dependent upon cell growth. In a continuous microbial conversion of OIP using a continuous stirred tank reactor, the cell density in the reactor seemed to be the limiting factor in the OIP conversion. Therefore, we developed an air-bubbling hollow fiber reactor to achieve a high density culture. By using this bioreactor, more than 3.3 times higher productivity was achieved. In addition, during the process, only a slight cell contamination to the product was observed. Therefore, this bioreactor is suitable for the continuous microbial conversion, considering further downstream processes and high productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holst, O., Hansson, L., Berg, A. C., and Matiasson, B. (1985),Appl. Microbiol. Biotechnol. 23, 10.

    Article  CAS  Google Scholar 

  2. Taniguchi, M., Kotani, N., and Kobayashi, T. (1987),J. Ferment. Technol. 65, 179.

    Article  CAS  Google Scholar 

  3. Taniguchi, M., Kotani, M., and Kobayashi, T. (1987),Appl. Microbiol. Biotechnol. 25, 434.

    Article  Google Scholar 

  4. Iijima, S., Kawai, S., Mizutani, S., Taniguchi, M., and Kobayashi, T. (1987).Appl. Microbiol. Biotechnol. 26, 542.

    Article  CAS  Google Scholar 

  5. Mikami, Y., Watanabe, E., Fukunaga, Y., and Kisaki, T. (1978),Agric. Biol. Chem. 42, 1075.

    CAS  Google Scholar 

  6. Mikami, Y., Fukunaga, Y., Arita, M., and Kisaki, T. (1981),Appl. Environ. Microbiol. 41, 610.

    CAS  Google Scholar 

  7. Mikami, Y., Fukunaga, Y., Hieda, T., Obi, Y., and Kisaki, T. (1981),Agric. Biol. Chem. 45, 331.

    CAS  Google Scholar 

  8. Mikami, Y., Fukunaga, Y., Arita, M., Obi, Y., and Kisaki, T. (1981),Agric. Biol. Chem. 45, 791.

    CAS  Google Scholar 

  9. Hori, N., Hieda, T., and Mikami, Y. (1984),Agric. Biol. Chem. 48, 123.

    CAS  Google Scholar 

  10. Sonnleitner, B. and Fiechter, A. (1983),Trends in Biotechnol. 1, 74.

    Article  Google Scholar 

  11. Sonnleitner, B., Giovanni, F., and Fiechter, A. (1985),J. Biotechnol. 3, 33.

    Article  CAS  Google Scholar 

  12. Sonnleitner, B. and Fiechter, A. (1986),Appl. Microbiol. Biotechnol. 23, 424.

    Article  CAS  Google Scholar 

  13. Sode, K., Kajiwara, K., Tamiya, E., Karube, I., Mikami, Y., Hori, N., and Yanagimoto, T. (1987),Biocatalysis 1, 77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sode, K., Honda, M., Mikami, Y. et al. Microbial conversion of 4-oxoisophorone by thermomonospora curvata using an air-bubbling hollow fiber reactor. Appl Biochem Biotechnol 19, 209–220 (1988). https://doi.org/10.1007/BF02921484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921484

Index Entries

Navigation