Skip to main content
Log in

Continuous cellobiose hydrolysis using self-immobilized β-glucosidase fromAspergillus phoenicis QM 329 in a fluidized-bed reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus phoenicis QM 329 was grown in the shape of beads in shake flasks and in an air-lift fermentor. The production of β-glucosidase started when the carbon source, glucose, was consumed. The β-glucosidase activity was retained in the beads at a pH below 6.0. The influence of bead diameter on enzyme activity and the pH and temperature optima for cellobiose hydrolysis has been studied. The enzyme-containing beads were used in a fluidized-bed reactor for continuous cellobiose hydrolysis, and a productivity of 2.0 g/L-h at a substrate conversion of 76% was obtained. The self-immobilized β- glucosidase is a stable and reusable enzyme with a half-life of 700 h when operating at 50°C and pH 4.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Montenecourt, B.S. (1983),Trends in Biotechnology 1, 156.

    Article  CAS  Google Scholar 

  2. Berghem, L. E. R., Pettersson, L. G., and Axiö-Frederiksson, U.-B. (1975),Eur. J. Biochem. 53, 55.

    Article  CAS  Google Scholar 

  3. Sternberg, D., Vijayakumar, P., and Reese, E. T. (1977),Can. J. Microbiol. 23, 139.

    Article  CAS  Google Scholar 

  4. Sundstrom, D. W., Klei, H. E., Coughlin, R. W., Biederman, G. J., and Brouwer, C. A. (1981),Biotech. Bioeng. 23, 473.

    Article  CAS  Google Scholar 

  5. Hahn-Hägerdal, B. (1984),Biotech. Bioeng.,26, 771.

    Article  Google Scholar 

  6. Allen, A. and Sternberg, D. (1980),Biotech. Bioeng. Symp. No 10, p. 189.

  7. Kubicek, C. P. and Pitt, D.E. (1982),Eur. J. Appl. Microbiol. Biotechnol. 16,189.

    Article  CAS  Google Scholar 

  8. Matteau, P. P. and Saddler, J. N. (1982),Biotechnol. Lett. 4, 513.

    Article  CAS  Google Scholar 

  9. Matteau, P. P. and Saddler, J. N. (1982),Biotechnol. Lett. 4, 715.

    Article  CAS  Google Scholar 

  10. Réczey, K., Persson, I., Tjerneld, F., and Hahn-Hägerdal, B. (1989),Biotechnol. Techniques 3, 205.

    Article  Google Scholar 

  11. Vogel, H. J. (1964),The American Naturalist XCVIII, 435.

    Article  Google Scholar 

  12. Hansson, G. and Seifert, G. (1987),Appl. Microbiol. Biotechnol. 26, 468.

    Article  CAS  Google Scholar 

  13. Bisset, F. and Sternberg, D. (1978),Appl. Environ. Microbiol. 35, 750.

    Google Scholar 

  14. Gong, C.-S., Ladisch, M. R., and Tsao, G. T. (1977),Biotech. Bioeng. 19, 959.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RÉczey, K., StalbrÅnd, H., Persson, I. et al. Continuous cellobiose hydrolysis using self-immobilized β-glucosidase fromAspergillus phoenicis QM 329 in a fluidized-bed reactor. Appl Biochem Biotechnol 24, 637–649 (1990). https://doi.org/10.1007/BF02920285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920285

Index Entries

Navigation