Skip to main content
Log in

Biochemical events associated with lymphocyte activation

  • Symposium
  • Published:
Survey of Immunologic Research Aims and scope Submit manuscript

Conclusions

Lymphocyte activation is thus associated with a number of alterations each of which might serve to transmit the signal from the exterior to the interior of the cell. However, as can be gleaned from this brief discussion, many of these alterations are intimately related and it is most likely that the ultimate biochemical pathway or pathways for activation will be a combination of many of the changes. It is important to note that, although the actual pathway or pathways have not been clearly delineated, the evidence to date does allow us to devise ways of manipulating lymphocyte activation and in so doing to manipulate the immune response. It also allows one to compare the known steps in the sequence in lymphocytes activated by mitogenic lectins and other cells activated by specific agents. It is interesting that a perusal of the other articles in this series will demonstrate that many of the changes seen in the lymphocyte are seen in other activation systems and suggests that the means of activating a cell are common, but that the result of the activation is cell dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koretzy, G.A.; Daniele, R.P.; Greene, W.C.; Nowell, P.C.: Evidence for an interleukin-independent pathway for human lymphocyte activation. Proc. natn. Acad. Sci. USA80: 3444–3447 (1983).

    Article  Google Scholar 

  2. Wedner, H.J.; Parker, C.W.: Lymphocyte activation. Prog. Allergy, vol. 20, pp. 195–300 (Karger, Basel 1976).

    Google Scholar 

  3. Lindahl-Kiessling, K.: Mechanism of phytohemagglutinin (PHA) action. V. PHA compared with concanavalin A. Expl Cell Res.70: 17 (1972).

    Article  CAS  Google Scholar 

  4. Wedner, H.J.: The role of calcium and arachidonic acid metabolism in lymphocyte activation; in Hadden, Chedid, Dukor, Spreafico, Willoughby, Advances in Immunopharmacology, pp. 81–86 (Pergamon Press, Oxford 1983).

    Google Scholar 

  5. Lichtman, A.H.; Segel, G.B.; Lichtman, M.A.: The role of calcium in lymphocyte proliferation. Blood67: 413–422 (1983).

    Google Scholar 

  6. Tsien, R.Y.; Pozzan, T.; Rink, T.J.: T-cell mitogens cause early changes in cytoplasmic free Ca++ and membrane potential in lymphocytes. Nature, Lond.295: 68–70 (1982).

    Article  CAS  Google Scholar 

  7. Hesketh, T.R.; Smith, G.A.; Moore, J.P.; Taylor, M.V.; Metcalfe, J.C.: Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J. biol. Chem.258: 4876–4882 (1983).

    PubMed  CAS  Google Scholar 

  8. Wedner, HJ.: Handbook of experimental pharmacology; in Kebabian, Nathanson, Cyclic nucleotides, vol. II, pp. 764–785 (Springer, Berlin).

  9. Snider, D.E.; Parker, C.W.: Adenylate cyclase activity in lymphocyte subcellular fractions. Characterization of non-nuclear adenylate cyclase. Biochemistry162: 473–482 (1977).

    CAS  Google Scholar 

  10. Wedner, HJ.; Parker, C.W.: Adenylate cyclase activity in lymphocyte subcellular fractions. Characterization of a nuclear adenylate cyclase. Biochemistry762: 483–491 (1977).

    Google Scholar 

  11. Atkinson, J.P.; Kelly, J.P.; Weiss, A.; Wedner, H.J.; Parker, C.W.: Enhanced intracellular cGMP concentrations and lectin induced lymphocyte transformation. J. Immun.727: 2282–2291 (1978).

    Google Scholar 

  12. Chaplin, D.D.; Wedner, H.J.; Parker, C.W.: Protein phosphorylation in human peripheral blood lymphocytes. I. Subcellular distribution and partial characterization of adenosine 3′,5′-monophosphate-dependent protein kinase and protein phosphorylation in human peripheral blood lymphocytes. Biochem. J.182: 525–536 (1979).

    PubMed  CAS  Google Scholar 

  13. Chaplin, D.D.; Wedner, H.J.; Parker, C.W.: Protein phosphorylation in human peripheral blood lymphocytes. II. Phosphorylation of endogenous plasma membrane and cytoplasmic proteins. Biochem. J.182: 537–546 (1979).

    PubMed  CAS  Google Scholar 

  14. Piras, M.M.; Horenstein, A.; Piras, R.: Identification of multiple protein kinases in normal human lymphocytes. Enzyme22: 219–229 (1977).

    PubMed  CAS  Google Scholar 

  15. Klimpel, G.R.; Byos, C.V.; Rüssel, D.H.; Lucas, D.O.: Cyclic-AMP-dependent protein kinase activation and the induction of ornithine decarboxylase during lymphocyte mitogenesis. J. Immun.725: 817–824 (1976).

    Google Scholar 

  16. Chaplin, D.D.; Wedner, H.J.; Parker, C.W.: Protein phosphorylation in human peripheral blood lymphocytes: mitogen-induced increases in protein phosphorylation in intact lymphocytes. J. Immun.124: 2390–2398 (1980).

    PubMed  CAS  Google Scholar 

  17. Takai, Y.; Kishimoto, A.; Mori, T.; Iwasa, Y.; Kawahara, Y.; Nishizika, Y.: Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipid. J. biol. Chem.254: 3692–3695 (1979).

    PubMed  CAS  Google Scholar 

  18. Ku, Y.; Kishimoto, A.; Takai, Y.; Ogawa, Y.; Kimuras, Y.; Nishizika, Y.: A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. II. Possible relation to phosphatidylinositol turnover induced by mitogens. J. Immun.727: 1375–1379 (1982).

    Google Scholar 

  19. Cooper, J.A.; Hunter, J.: Four different classes of retrovirus induce phosphorylation of tyrosine present in similar cellular proteins. Mol. Cell Biol.1: 394–407 (1981).

    PubMed  CAS  Google Scholar 

  20. Ushiro, H.; Cohen, S.: Identification of phosphotyrosine as a product of epidermal growth factoractivated protein kinase in A-431 cell membranes. J. biol. Chem.255: 8363–8365 (1980).

    PubMed  CAS  Google Scholar 

  21. Ek, B.; Heldin, C.-H.: Characterization of a tyrosine-specific kinase activity in human fibroblast membranes stimulated by platelet-derived growth factor. J. biol. Chem.257: 10486–10492 (1982).

    PubMed  CAS  Google Scholar 

  22. Reynolds, F.H., Jr.; Todaro, G.J.; Fryling, C.; Stephenson, J.R.: Human transforming growth factors induce tyrosine phosphorylation in EFG receptors. Nature, Lond.292: 259–262 (1981).

    Article  CAS  Google Scholar 

  23. Kasuga, M.; Fujita-Yamaguchi, Y.; Blithe, D.L.; Kahn, C.R.: Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc. natn. Acad. Sci. USA80: 2137–2141 (1983).

    Article  CAS  Google Scholar 

  24. Lasky, S.R.; Jacobs, B.L.; Samuel, C.E.: Mechanism of interferon action. J. biol. Chem.257: 11087–11093 (1982).

    PubMed  CAS  Google Scholar 

  25. Resch, K.; Ferber, E.: Phospholipid metabolism of stimulated lymphocytes - effects of phytohemagglutinin, concanavalin A and anti-immunoglobulin serum. Eur. J. Biochem.27: 153–161 (1972).

    Article  PubMed  CAS  Google Scholar 

  26. Rode, H.N.; Szamel, M.; Schneider, S.; Resch, K.: Phospholipid metabolism of stimulated lymphocytes - preferential incorporation of polyunsatu-rated fatty acids into plasma membrane phospholipid upon stimulation with co?canavalin A. Biochim. biophys. Acta688: 66–74 (1982).

    Article  CAS  Google Scholar 

  27. Rode, H.N.; Mahler, B.; Loracher, A.; Resch, K.: Functional mosaicism of the lymphocyte plasma membrane. II. Characterization of membrane subfractions of activated thymocytes. Eur. J. Immunol.9: 402–408 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. Stenson, W.F.; Parker, C.W.: Metabolism of arachidonic acid in ionophore stimulated neutrophils. Esterification of an hydroxylated metabolite into phospholipid. J. clin. Invest.64: 1457–1465 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. Waxdal, M.J.: Membrane methylation and other early biochemical reactions in the mitogen activation of lymphocytes; in Hadden, Chedid, Dukor, Spreafico, Willoughby, Advances in Immunopharmacology, vol. 2, pp. 75–79 (Pergamon Press, Oxford 1983).

    Google Scholar 

  30. Chaplin, D.D.; Wedner, H.J.: Inhibition of lectininduced lymphocyte activation by diamide and other sulfhydryl reagents. Cell Innunol.36: 303–311 (1978).

    Article  CAS  Google Scholar 

  31. Fischman, CF.; Udey, M.; Kurtz, M.; Wedner, H.J.: Inhibition of lymphocyte activation by 2-CHX-l: decreased intracellular glutathione inhibits an early event in the activation sequence. J. Immun.727: 2257–2262 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by USPHS Grant 5 R01 AI18281.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedner, H.J. Biochemical events associated with lymphocyte activation. Surv. immunol. Res. 3, 295–303 (1984). https://doi.org/10.1007/BF02919047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919047

Keywords

Navigation