Skip to main content

Cell Activation and Signaling in Lymphocytes

  • Chapter
  • First Online:
Tissue-Specific Cell Signaling

Abstract

Lymphocyte activation and proliferation are a result of a functional encounter between a lymphocyte bearing a clonotypic receptor that recognizes unique nonself-antigens and a cell that presents those specific antigens at its surface. Positive recognition of antigen by the T cell receptor of T lymphocytes, or by the B cell receptor of B lymphocytes, is then signaled to inner components of the cell through biochemical activation pathways. A number of adhesion molecules and co-receptors help to strengthen the interaction between the lymphocyte and the antigen presenting cell, and some of these surface proteins transduce signals that complement or amplify those delivered by the antigen receptor in a concerted action that modifies cellular behavior. B and T cell receptor-proximal signaling involves the extensive phosphorylation of intracellular effectors and adaptors that help to assemble large multi-protein complexes that transmit and diversify the received stimuli into the activation of an array of transcription factors that modify the transcriptional landscape of the cell and change cell behavior. The majority of the signaling steps are common to those of many different mammalian cell types. However, the extreme complexity of the lymphocyte signaling networks with many additional checkpoints and controlling steps endows lymphocytes with a remarkable capacity of regulating the outcome of activation that goes beyond the simple response to increased amounts of agonist. On the outcome of controlled lymphocyte activation depends the building of an effective immune response towards foreign or external aggression while avoiding self-reactivity against own components and development of autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP1:

Activator protein 1

APC:

Antigen presenting Cell

BCL6:

B-cell lymphoma 6 protein

BCL10:

B-cell lymphoma/leukemia 10

BCR:

B Cell receptor

BLNK:

B-cell linker protein

BTLA:

B- and T-lymphocyte attenuator

CARD11:

Caspase recruitment domain-containing protein 11

CBL:

Casitas B-lineage lymphoma proto-oncogene

CD40LG:

CD40 ligand

CSK:

C-terminal Src kinase

cSMAC:

Central supramolecular activation cluster

CTLA4:

Cytotoxic T-lymphocyte protein 4

DAG:

1,2-Diacylglycerol

dSMAC:

Distal supramolecular activation cluster

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated protein kinase

FYB1:

FYN-binding protein 1

FYN:

FGR/YES novel protein

GRAP2:

GRB2-related adapter protein 2

GRB2:

Growth factor receptor-bound protein 2

ICAM1:

Intercellular adhesion molecule 1

IgSF:

Immunoglobulin superfamily

IKKA:

Inhibitor of nuclear factor κB kinase A

IKZF1:

Ikaros family zinc finger protein 1

IL2:

Interleukin 2

INPP5D:

Inositol polyphosphate-5-phosphatase D

InsP3:

Inositol 1,4,5-trisphosphate

IRF8:

Interferon regulatory factor 8

ITAM:

Immunoreceptor tyrosine-based activation motif

ITGAL:

Integrin alpha-L

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

ITK:

IL2-inducible T-cell tyrosine kinase

LAG3:

Lymphocyte-activation gene 3

LAT:

Linker for activation of T cells

LCK:

Lymphocyte-specific protein-tyrosine kinase

LCP2:

Lymphocyte cytosolic protein 2

LYN:

Lck/Yes-related novel protein tyrosine kinase

MALT1:

Mucosa-associated lymphoid tissue lymphoma translocation protein 1

MAP2K1:

Mitogen-activated protein kinase kinase 1

mIg:

Membrane immunoglobulin

NCK1:

Non-catalytic region of tyrosine kinase adaptor protein 1

NFAT:

Nuclear factor of activated T-cells

NFKB:

Nuclear factor κB

NFKBI:

NFKB inhibitor IκB

NTAL:

Non-T cell activation linker

ORAI1:

Calcium release-activated calcium channel protein 1

PAG1:

Phosphoprotein associated with glycosphingolipid-enriched microdomains 1

PD1:

Programmed cell death protein 1

PDPK1:

3-Phosphoinositide-dependent protein kinase 1

PH:

Pleckstrin homology

PIK3:

Phosphatidylinositol 3-kinase

PIK3C:

Catalytic subunit of phosphatidylinositol 3-kinase

PIK3R:

Regulatory subunit of phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PLCG:

Phospholipase C-γ

PLCG1:

Phospholipase C-γ1

PLCG2:

Phospholipase C-γ2

pMHC:

Peptide-MHC complex

POU2F1:

POU domain, class 2, transcription factor 1

PRDM1:

PR domain zinc finger protein 1

PRKCB:

PKC isoform β

PRKCQ:

PKC isoform θ

pSMAC:

Peripheral supramolecular activation cluster

PtdIns(4,5)P2:

Phosphatidylinositol 4,5-bisphosphate

PtdIns(3,4,5)P3:

Phosphatidylinositol 3,4,5-trisphosphate  

PTK:

Protein tyrosine kinase

PTPN6:

Protein tyrosine phosphatase non-receptor type 6

PTPN11:

Protein  tyrosine phosphatase non-receptor type II

RASA1:

RAS GTPase-activating protein 1

RASGRP1:

RAS guanyl-releasing protein 1

RASGRP3:

RAS guanyl-releasing protein 3

RTK:

Receptor tyrosine kinases

SH:

SRC homology

SIGLEC:

Sialic acid binding Ig-like lectin

SOS1:

Son of sevenless homolog 1

SRCR:

Scavenger receptor cysteine-rich

SYK:

Spleen tyrosine kinase

TCR:

 T cell receptor

TGF:

Transforming growth factor

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

TNFR:

Tumor necrosis factor receptor

TRAF6:

TNF receptor-associated factor 6

XBP1:

X-box-binding protein 1

ZAP-70:

Z-associated protein-70

References

  1. Stenger RM, Meiring HD, Kuipers B et al (2014) Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells. Clin Vaccine Immunol 21:641–650

    Article  PubMed  PubMed Central  Google Scholar 

  2. Croft NP, Smith SA, Wong YC et al (2013) Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog 9:e1003129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Purbhoo MA, Sutton DH, Brewer JE et al (2006) Quantifying and imaging NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. J Immunol 176:7308–7316

    Article  CAS  PubMed  Google Scholar 

  4. Cho BK, Lian KC, Lee P et al (2001) Differences in antigen recognition and cytolytic activity of CD8(+) and CD8(−) T cells that express the same antigen-specific receptor. Proc Natl Acad Sci USA 98:1723–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chien Y, Becker DM, Lindsten T et al (1984) A third type of murine T-cell receptor gene. Nature 312:331–335

    Article  Google Scholar 

  6. Hedrick SM, Cohen DI, Nielsen EA et al (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149–153

    Article  CAS  PubMed  Google Scholar 

  7. Brenner MB, McLean J, Dialynas DP et al (1986) Identification of a putative second T-cell receptor. Nature 322:145–149

    Article  CAS  PubMed  Google Scholar 

  8. Manolios N, Letourneur F, Bonifacino JS et al (1991) Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor. EMBO J 10:1643–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de la Hera A, Müller U, Olsson C et al (1991) Structure of the T cell antigen receptor (TCR): two CD3 epsilon subunits in a functional TCR/CD3 complex. J Exp Med 173:7–17

    Article  PubMed  Google Scholar 

  10. Hayes SM, Love PE (2006) Stoichiometry of the murine gammadelta T cell receptor. J Exp Med 203:47–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chien YH, Konigshofer Y (2007) Antigen recognition by gammadelta T cells. Immunol Rev 215:46–58

    Article  CAS  PubMed  Google Scholar 

  12. Ashwell JD, Klausner RD (1990) Genetic and mutational analysis of the T-cell antigen receptor. Ann Rev Immunol 8:139–167

    Article  CAS  Google Scholar 

  13. Weiss A (1991) Molecular and genetic insights into T cell antigen receptor structure and function. Ann Rev Genet 25:487–510

    Article  CAS  PubMed  Google Scholar 

  14. Geisler C, Kuhlmann J, Rubin B (1989) Assembly, intracellular processing, and expression at the cell surface of the human alpha beta T cell receptor/CD3 complex. Function of the CD3-zeta chain. J Immunol 143:4069–4077

    Article  CAS  PubMed  Google Scholar 

  15. Weissman AM, Frank SJ, Orloff DG et al (1989) Role of the zeta chain in the expression of the T cell antigen receptor: genetic reconstitution studies. EMBO J 8:3651–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reth M (1989) Antigen receptor tail clue. Nature 338:383–384

    Article  CAS  PubMed  Google Scholar 

  17. Doyle C, Strominger JL (1987) Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330:256–259

    Article  CAS  PubMed  Google Scholar 

  18. Norment AM, Salter RD, Parham P et al (1988) Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 336:79–81

    Article  CAS  PubMed  Google Scholar 

  19. Beyers AD, Spruyt LL, Williams AF (1992) Molecular associations between the T-lymphocyte antigen receptor complex and the surface antigens CD2, CD4, or CD8 and CD5. Proc Natl Acad Sci USA 89:2945–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wange RL, Malek SN, Desiderio S et al (1993) Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells. J Biol Chem 268:19797–19801

    Article  CAS  PubMed  Google Scholar 

  21. Lee SK, Shaw A, Maher SE et al (1994) p59fyn tyrosine kinase regulates p56lck tyrosine kinase activity and early TCR-mediated signaling. Int Immunol 6:1621–1627

    Article  CAS  PubMed  Google Scholar 

  22. Zamoyska R, Basson A, Filby A et al (2003) The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev 191:107–118

    Article  CAS  PubMed  Google Scholar 

  23. Songyang Z, Shoelson SE, Chaudhuri M et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  CAS  PubMed  Google Scholar 

  24. Cicchetti P, Mayer BJ, Thiel G et al (1992) Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257:803–806

    Article  CAS  PubMed  Google Scholar 

  25. Yu H, Chen JK, Feng S et al (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945

    Article  CAS  PubMed  Google Scholar 

  26. Weiss A, Littman DR (1994) Signal transduction by lymphocyte antigen receptors. Cell 76:263–274

    Article  CAS  PubMed  Google Scholar 

  27. Okada M, Nada S, Yamanashi Y et al (1991) CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem 266:24249–24252

    Article  CAS  PubMed  Google Scholar 

  28. Mustelin T, Coggeshall KM, Altman A (1989) Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci USA 86:6302–6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mustelin T, Pessa-Morikawa T, Autero M et al (1992) Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. Eur J Immunol 22:1173–1178

    Article  CAS  PubMed  Google Scholar 

  30. Nika K, Soldani C, Salek M et al (2010) Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32:766–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kashio N, Matsumoto W, Parker S et al (1998) The second domain of the CD45 protein tyrosine phosphatase is critical for interleukin-2 secretion and substrate recruitment of TCR-zeta in vivo. J Biol Chem 273:33856–33863

    Article  CAS  PubMed  Google Scholar 

  32. Streuli M, Krueger NX, Thai T et al (1990) Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J 9:2399–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McNeill L, Salmond RJ, Cooper JC et al (2007) The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity 27:425–437

    Article  CAS  PubMed  Google Scholar 

  34. Dianzani U, Redoglia V, Malavasi F et al (1992) Isoform-specific associations of CD45 with accessory molecules in human T lymphocytes. Eur J Immunol 22:365–371

    Article  CAS  PubMed  Google Scholar 

  35. Zamoyska R (2007) Why is there so much CD45 on T cells? Immunity 27:421–423

    Google Scholar 

  36. Sun ZJ, Kim KS, Wagner G et al (2001) Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105:913–923

    Article  CAS  PubMed  Google Scholar 

  37. Ma Z, Janmey PA, Finkel TH (2008) The receptor deformation model of TCR triggering. FASEB J 22:1002–1008

    Article  CAS  PubMed  Google Scholar 

  38. Xu C, Gagnon E, Call ME et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gil D, Schamel WW, Montoya M et al (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912

    Article  CAS  PubMed  Google Scholar 

  40. Minguet S, Schamel WW (2008) Permissive geometry model. Adv Exp Med Biol 640:113–120

    Article  CAS  PubMed  Google Scholar 

  41. Brameshuber M, Kellner F, Rossboth BK et al (2018) Monomeric TCRs drive T cell antigen recognition. Nat Immunol 19:487–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. James J, Oliveira M, Carmo A et al (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    Article  CAS  PubMed  Google Scholar 

  43. James JR, McColl J, Oliveira MI et al (2011) The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 286:31993–32001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grakoui A, Bromley SK, Sumen C et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  45. Davis SJ, van der Merwe PA (1996) The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today 17:177–187

    Article  CAS  PubMed  Google Scholar 

  46. Varma R (2008) TCR triggering by the pMHC complex: valency, affinity, and dynamics. Sci Signal 1:pe21

    Google Scholar 

  47. Valitutti S, Müller S, Cella M et al (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151

    Article  CAS  PubMed  Google Scholar 

  48. Trautmann A, Randriamampita C (2003) Initiation of TCR signalling revisited. Trends Immunol 24:425–428

    Article  CAS  PubMed  Google Scholar 

  49. Irvine DJ, Purbhoo MA, Krogsgaard M et al (2002) Direct observation of ligand recognition by T cells. Nature 419:845–849

    Article  CAS  PubMed  Google Scholar 

  50. Matsui K, Boniface JJ, Reay PA et al (1991) Low affinity interaction of peptide-MHC complexes with T cell receptors. Science 254:1788–1791

    Article  CAS  PubMed  Google Scholar 

  51. Iwashima M, Irving BA, van Oers NS et al (1994) Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263:1136–1139

    Article  CAS  PubMed  Google Scholar 

  52. Chan AC, Desai DM, Weiss A (1994) The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Ann Rev Immunol 12:555–592

    Article  CAS  Google Scholar 

  53. Klammt C, Novotná L, Li DT et al (2015) T cell receptor dwell times control the kinase activity of Zap70. Nat Immunol 16:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang W, Sloan-Lancaster J, Kitchen J et al (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92

    Article  CAS  PubMed  Google Scholar 

  55. Chan AC, van Oers NS, Tran A et al (1994) Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J Immunol 152:4758–4766

    Article  CAS  PubMed  Google Scholar 

  56. Arpaia E, Shahar M, Dadi H et al (1994) Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell 76:947–958

    Article  CAS  PubMed  Google Scholar 

  57. Elder ME, Lin D, Clever J et al (1994) Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264:1596–1599

    Article  CAS  PubMed  Google Scholar 

  58. Williamson DJ, Owen DM, Rossy J et al (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12:655–662

    Article  CAS  PubMed  Google Scholar 

  59. Lillemeier BF, Mörtelmaier MA, Forstner MB et al (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  60. Sherman E, Barr V, Manley S et al (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35:705–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Panayotou G, Waterfield MD (1993) The assembly of signalling complexes by receptor tyrosine kinases. BioEssays 15:171–177

    Article  CAS  PubMed  Google Scholar 

  62. Majerus PW, Connolly TM, Deckmyn H et al (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234:1519–1526

    Article  CAS  PubMed  Google Scholar 

  63. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  CAS  PubMed  Google Scholar 

  64. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  CAS  PubMed  Google Scholar 

  65. Trebak M, Kinet JP (2019) Calcium signalling in T cells. Nat Rev Immunol 19:154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goodbourn S (1994) T-cell activation: transcriptional regulation in activated T cells. Curr Biol 4:930–932

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto R, Wang D, Blonska M et al (2005) Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-κB activation. Immunity 23:575–585

    Article  CAS  PubMed  Google Scholar 

  68. David L, Li Y, Ma J et al (2018) Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome. Proc Natl Acad Sci USA 115:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin X, O’Mahony A, Mu Y et al (2000) Protein kinase C-θ participates in NF-κB activation induced by CD3-CD28 costimulation through selective activation of IκB kinase β. Mol Cell Biol 20:2933–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu SK, Fang N, Koretzky GA et al (1999) The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr Biol 9:67–75

    Article  CAS  PubMed  Google Scholar 

  71. Liu KQ, Bunnell SC, Gurniak CB et al (1998) T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J Exp Med 187:1721–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krause M, Sechi AS, Konradt M et al (2000) Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol 149:181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li N, Batzer A, Daly R et al (1993) Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363:85–88

    Article  CAS  PubMed  Google Scholar 

  74. Lapinski PE, King PD (2012) Regulation of Ras signal transduction during T cell development and activation. Am J Clin Exp Immunol 1:147–153

    PubMed  PubMed Central  Google Scholar 

  75. Roose JP, Mollenauer M, Ho M et al (2007) Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 27:2732–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    Article  CAS  PubMed  Google Scholar 

  77. Kyriakis JM, App H, Zhang XF et al (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421

    Article  CAS  PubMed  Google Scholar 

  78. Matsuda S, Kosako H, Takenaka K et al (1992) Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 11:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crispín JC, Tsokos GC (2009) Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmun Rev 8:190–195

    Article  PubMed  Google Scholar 

  80. Crabtree GR (1989) Contingent genetic regulatory events in T lymphocyte activation. Science 243:355–361

    Article  CAS  PubMed  Google Scholar 

  81. Crabtree GR, Clipstone NA (1994) Signal transmission between the plasma membrane and nucleus of T lymphocytes. Ann Rev Biochem 63:1045–1083

    Article  CAS  PubMed  Google Scholar 

  82. Baeuerle PA (1991) The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta 1072:63–80

    CAS  PubMed  Google Scholar 

  83. Schwartz RH (1992) Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71:1065–1068

    Article  CAS  PubMed  Google Scholar 

  84. Vandenberghe P, Freeman GJ, Nadler LM et al (1992) Antibody and B7/BB1-mediated ligation of the CD28 receptor induces tyrosine phosphorylation in human T cells. J Exp Med 175:951–960

    Article  CAS  PubMed  Google Scholar 

  85. June CH, Ledbetter JA, Gillespie MM et al (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 7:4472–4481

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Lier RA, Brouwer M, De Groot ED et al (1991) T cell receptor/CD3 and CD28 use distinct intracellular signaling pathways. Eur J Immunol 21:1775–1778

    Article  PubMed  Google Scholar 

  87. Pagès F, Ragueneau M, Rottapel R et al (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369:327–329

    Article  PubMed  Google Scholar 

  88. Prasad KV, Cai YC, Raab M et al (1994) T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc Natl Acad Sci USA 91:2834–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Su B, Jacinto E, Hibi M et al (1994) JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77:727–736

    Article  PubMed  Google Scholar 

  90. Li W, Whaley CD, Bonnevier JL et al (2001) CD28 signaling augments Elk-1-dependent transcription at the c-fos gene during antigen stimulation. J Immunol 167:827–835

    Article  CAS  PubMed  Google Scholar 

  91. Esensten JH, Helou YA, Chopra G et al (2016) CD28 costimulation: from mechanism to therapy. Immunity 44:973–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Ann Rev Immunol 27:591–619

    Article  CAS  Google Scholar 

  93. Attema JL, Reeves R, Murray V et al (2002) The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation. J Immunol 169:2466–2476

    Article  CAS  PubMed  Google Scholar 

  94. Thomas RM, Gao L, Wells AD (2005) Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 174:4639–4646

    Article  CAS  PubMed  Google Scholar 

  95. Nandiwada SL, Li W, Zhang R et al (2006) p300/Cyclic AMP-responsive element binding-binding protein mediates transcriptional coactivation by the CD28 T cell costimulatory receptor. J Immunol 177:401–413

    Article  CAS  PubMed  Google Scholar 

  96. Butte MJ, Lee SJ, Jesneck J et al (2012) CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS ONE 7:e40032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lindsten T, June CH, Ledbetter JA et al (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244:339–343

    Article  CAS  Google Scholar 

  98. Gimmi CD, Freeman GJ, Gribben JG et al (1991) B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA 88:6575–6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tarakhovsky A, Kanner SB, Hombach J et al (1995) A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269:535–537

    Article  CAS  PubMed  Google Scholar 

  100. Oliveira MI, Gonçalves CM, Pinto M et al (2012) CD6 attenuates early and late signaling events, setting thresholds for T-cell activation. Eur J Immunol 42:195–205

    Article  CAS  PubMed  Google Scholar 

  101. Wee S, Schieven GL, Kirihara JM et al (1993) Tyrosine phosphorylation of CD6 by stimulation of CD3: augmentation by the CD4 and CD2 coreceptors. J Exp Med 177:219–223

    Article  CAS  PubMed  Google Scholar 

  102. Burgess KE, Yamamoto M, Prasad KV et al (1992) CD5 acts as a tyrosine kinase substrate within a receptor complex comprising T-cell receptor zeta chain/CD3 and protein-tyrosine kinases p56lck and p59fyn. Proc Natl Acad Sci USA 89:9311–9315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Voisinne G, Gonzalez de Peredo A, Roncagalli R (2018) CD5, an undercover regulator of TCR signaling. Front Immunol 9:2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gonçalves CM, Henriques SN, Santos RF et al (2018) CD6, a rheostat-type signalosome that tunes T cell activation. Front Immunol 9:2994

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brdicka T, Pavlistová D, Leo A et al (2000) Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med 191:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Engelhardt JJ, Sullivan TJ, Allison JP (2006) CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol 177:1052–1061

    Article  CAS  PubMed  Google Scholar 

  107. Schneider H, Downey J, Smith A et al (2006) Reversal of the TCR stop signal by CTLA-4. Science 313:1972–1975

    Article  CAS  PubMed  Google Scholar 

  108. Agata Y, Kawasaki A, Nishimura H et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  CAS  PubMed  Google Scholar 

  109. Yu X, Harden K, Gonzalez LC et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10:48–57

    Article  CAS  PubMed  Google Scholar 

  110. Triebel F, Jitsukawa S, Baixeras E et al (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171:1393–1405

    Article  CAS  PubMed  Google Scholar 

  111. Han P, Goularte OD, Rufner K et al (2004) An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol 172:5931–5939

    Article  CAS  PubMed  Google Scholar 

  112. Lozano E, Dominguez-Villar M, Kuchroo V et al (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188:3869–3875

    Article  CAS  PubMed  Google Scholar 

  113. Liang B, Workman C, Lee J et al (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180:5916–5926

    Article  CAS  PubMed  Google Scholar 

  114. Daëron M (1995) Intracytoplasmic sequences involved in the biological properties of low-affinity receptors for IgG expressed by murine macrophages. Braz J Med Biol Res 28:263–274

    PubMed  Google Scholar 

  115. Staub E, Rosenthal A, Hinzmann B (2004) Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal 16:435–456

    Article  CAS  PubMed  Google Scholar 

  116. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W et al (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chuang E, Fisher TS, Morgan RW et al (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322

    Article  CAS  PubMed  Google Scholar 

  118. Liu S, Zhang H, Li M et al (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20:456–464

    Article  CAS  PubMed  Google Scholar 

  119. Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395

    Article  CAS  PubMed  Google Scholar 

  120. Watanabe N, Gavrieli M, Sedy JR et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679

    Article  CAS  PubMed  Google Scholar 

  121. Reth M (1992) Antigen receptors on B lymphocytes. Ann Rev Immunol 10:97–121

    Article  CAS  Google Scholar 

  122. Roth DB (2014) V(D)J recombination: mechanism, errors, and fidelity. Microbiol Spectr 2:MDNA3-0041-2014

    Google Scholar 

  123. Reth M, Wienands J (1997) Initiation and processing of signals from the B cell antigen receptor. Ann Rev Immunol 15:453–479

    Article  CAS  Google Scholar 

  124. Brouns GS, de Vries E, Borst J (1995) Assembly and intracellular transport of the human B cell antigen receptor complex. Int Immunol 7:359–368

    Article  CAS  PubMed  Google Scholar 

  125. Grupp SA, Mitchell RN, Schreiber KL et al (1995) Molecular mechanisms that control expression of the B lymphocyte antigen receptor complex. J Exp Med 181:161–168

    Article  CAS  PubMed  Google Scholar 

  126. Brooks SR, Kirkham PM, Freeberg L et al (2004) Binding of cytoplasmic proteins to the CD19 intracellular domain is high affinity, competitive, and multimeric. J Immunol 172:7556–7564

    Article  CAS  PubMed  Google Scholar 

  127. Buhl AM, Cambier JC (1999) Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton’s tyrosine kinase. J Immunol 162:4438–4446

    Article  CAS  PubMed  Google Scholar 

  128. Fujimoto M, Fujimoto Y, Poe JC et al (2000) CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13:47–57

    Article  CAS  PubMed  Google Scholar 

  129. O’Rourke LM, Tooze R, Turner M et al (1998) CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8:635–645

    Article  PubMed  Google Scholar 

  130. Matsumoto AK, Martin DR, Carter RH et al (1993) Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med 178:1407–1417

    Article  CAS  PubMed  Google Scholar 

  131. Fearon DT, Carter RH (1995) The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Ann Rev Immunol 13:127–149

    Article  CAS  Google Scholar 

  132. Cherukuri A, Shoham T, Sohn HW et al (2004) The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts. J Immunol 172:370–380

    Article  CAS  PubMed  Google Scholar 

  133. Wilkins C, Woodward J, Lau DT et al (2013) IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 57:461–469

    Article  CAS  PubMed  Google Scholar 

  134. Dempsey PW, Allison ME, Akkaraju S et al (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348–350

    Article  CAS  PubMed  Google Scholar 

  135. Carter RH, Doody GM, Bolen JB et al (1997) Membrane IgM-induced tyrosine phosphorylation of CD19 requires a CD19 domain that mediates association with components of the B cell antigen receptor complex. J Immunol 158:3062–3069

    Article  CAS  PubMed  Google Scholar 

  136. Depoil D, Fleire S, Treanor BL et al (2008) CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol 9:63–72

    Article  CAS  PubMed  Google Scholar 

  137. Hasegawa M, Fujimoto M, Poe JC et al (2001) CD19 can regulate B lymphocyte signal transduction independent of complement activation. J Immunol 167:3190–3200

    Article  CAS  PubMed  Google Scholar 

  138. Noelle RJ, Roy M, Shepherd DM et al (1992) A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA 89:6550–6554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ren CL, Morio T, Fu SM et al (1994) Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C gamma 2. J Exp Med 179:673–680

    Article  CAS  PubMed  Google Scholar 

  140. Berberich I, Shu GL, Clark EA (1994) Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol 153:4357–4366

    Article  CAS  PubMed  Google Scholar 

  141. Dadgostar H, Zarnegar B, Hoffmann A et al (2002) Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci USA 99:1497–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nitschke L, Carsetti R, Ocker B et al (1997) CD22 is a negative regulator of B-cell receptor signalling. Curr Biol 7:133–143

    Article  CAS  PubMed  Google Scholar 

  143. Blasioli J, Paust S, Thomas ML (1999) Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J Biol Chem 274:2303–2307

    Article  CAS  PubMed  Google Scholar 

  144. Otipoby KL, Draves KE, Clark EA (2001) CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J Biol Chem 276:44315–44322

    Article  CAS  PubMed  Google Scholar 

  145. Chen J, Wang H, Xu WP et al (2016) Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+ i signal in B cells. Oncotarget 7:56129–56146

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tridandapani S, Kelley T, Pradhan M et al (1997) Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fc gamma immunoreceptor tyrosine-based inhibition motif peptide motif. Mol Cell Biol 17:4305–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hippen KL, Buhl AM, D’Ambrosio D et al (1997) Fc gammaRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity 7:49–58

    Article  CAS  PubMed  Google Scholar 

  148. Dal Porto JM, Gauld SB, Merrell KT et al (2004) B cell antigen receptor signaling 101. Mol Immunol 41:599–613

    Article  Google Scholar 

  149. Kurosaki T (1999) Genetic analysis of B cell antigen receptor signaling. Ann Rev Immunol 17:555–592

    Article  CAS  Google Scholar 

  150. Pleiman CM, Abrams C, Gauen LT et al (1994) Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Proc Natl Acad Sci USA 91:4268–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Johnson SA, Pleiman CM, Pao L et al (1995) Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J Immunol 155:4596–4603

    Article  CAS  PubMed  Google Scholar 

  152. Cheng PC, Dykstra ML, Mitchell RN et al (1999) A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 190:1549–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cambier JC, Pleiman CM, Clark MR (1994) Signal transduction by the B cell antigen receptor and its coreceptors. Ann Rev Immunol 12:457–486

    Article  CAS  Google Scholar 

  154. Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–809

    Article  CAS  PubMed  Google Scholar 

  155. Harwood NE, Batista FD (2008) New insights into the early molecular events underlying B cell activation. Immunity 28:609–619

    Article  CAS  PubMed  Google Scholar 

  156. Byth KF, Conroy LA, Howlett S et al (1996) CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+ CD8+ thymocytes, and B cell maturation. J Exp Med 183:1707–1718

    Article  CAS  PubMed  Google Scholar 

  157. Kishihara K, Penninger J, Wallace VA et al (1993) Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74:143–156

    Article  CAS  PubMed  Google Scholar 

  158. Pao LI, Bedzyk WD, Persin C et al (1997) Molecular targets of CD45 in B cell antigen receptor signal transduction. J Immunol 158:1116–1124

    Article  CAS  PubMed  Google Scholar 

  159. Pao LI, Cambier JC (1997) Syk, but not Lyn, recruitment to B cell antigen receptor and activation following stimulation of CD45 B cells. J Immunol 158:2663–2669

    Article  CAS  PubMed  Google Scholar 

  160. Benatar T, Carsetti R, Furlonger C et al (1996) Immunoglobulin-mediated signal transduction in B cells from CD45-deficient mice. J Exp Med 183:329–334

    Article  CAS  PubMed  Google Scholar 

  161. Mee PJ, Turner M, Basson MA et al (1999) Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. Eur J Immunol 29:2923–2933

    Article  CAS  PubMed  Google Scholar 

  162. Zhu JW, Brdicka T, Katsumoto TR et al (2008) Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 28:183–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fleire SJ, Goldman JP, Carrasco YR et al (2006) B cell ligand discrimination through a spreading and contraction response. Science 312:738–741

    Article  CAS  PubMed  Google Scholar 

  164. Rowley RB, Burkhardt AL, Chao HG et al (1995) Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem 270:11590–11594

    Article  CAS  PubMed  Google Scholar 

  165. Fu C, Turck CW, Kurosaki T et al (1998) BLNK: a central linker protein in B cell activation. Immunity 9:93–103

    Article  CAS  PubMed  Google Scholar 

  166. Antony P, Petro JB, Carlesso G et al (2004) B-cell antigen receptor activates transcription factors NFAT (nuclear factor of activated T-cells) and NF-kappaB (nuclear factor kappaB) via a mechanism that involves diacylglycerol. Biochem Soc Trans 32:113–115

    Article  CAS  PubMed  Google Scholar 

  167. Cantrell D (2015) Signaling in lymphocyte activation. Cold Spring Harb Perspect Biol 7:a018788

    Google Scholar 

  168. Hempel WM, Schatzman RC, DeFranco AL (1992) Tyrosine phosphorylation of phospholipase C-gamma 2 upon cross-linking of membrane Ig on murine B lymphocytes. J Immunol 148:3021–3027

    Article  CAS  PubMed  Google Scholar 

  169. Guo B, Su TT, Rawlings DJ (2004) Protein kinase C family functions in B-cell activation. Curr Opin Immunol 16:367–373

    Article  CAS  PubMed  Google Scholar 

  170. Oh-hora M, Johmura S, Hashimoto A et al (2003) Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med 198:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Brdicka T, Imrich M, Angelisová P et al (2002) Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J Exp Med 196:1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6:218–230

    Article  CAS  PubMed  Google Scholar 

  173. Ackermann JA, Radtke D, Maurberger A et al (2011) Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling. EMBO J 30:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Poe JC, Fujimoto M, Jansen PJ et al (2000) CD22 forms a quaternary complex with SHIP, Grb2, and Shc: a pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem 275:17420–17427

    Article  CAS  PubMed  Google Scholar 

  175. Setz CS, Hug E, Khadour A et al (2018) PI3K-mediated Blimp-1 activation controls B cell selection and homeostasis. Cell Rep 24:391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ding BB, Bi E, Chen H et al (2013) IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol 190:1827–1836

    Article  CAS  PubMed  Google Scholar 

  177. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  178. Shaffer AL, Lin KI, Kuo TC et al (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:51–62

    Article  CAS  PubMed  Google Scholar 

  179. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93

    Article  CAS  PubMed  Google Scholar 

  180. Dent AL, Shaffer AL, Yu X et al (1997) Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276:589–592

    Article  CAS  PubMed  Google Scholar 

  181. Lee CH, Melchers M, Wang H et al (2006) Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J Exp Med 203:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shaffer AL, Yu X, He Y et al (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13:199–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-032296 (PTDC/MED-IMU/32296/2017). SNH is recipient of a studentship SFRH/BD/133312/2017 from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. Carmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carmo, A.M., Henriques, S.N. (2020). Cell Activation and Signaling in Lymphocytes. In: Silva, J.V., Freitas, M.J., Fardilha, M. (eds) Tissue-Specific Cell Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-44436-5_5

Download citation

Publish with us

Policies and ethics