Skip to main content
Log in

Wind-driven ocean circulation in shallow water lattice Boltzmann model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhatanagar, P. L., E. P. Gross, and M. Krook, 1954: A model for collision processes in gases. I. Small amplitude process in charged and neutral one-component systems.Phys. Rev.,94(3), 511–525.

    Article  Google Scholar 

  • Bryan, K., 1963: A numerical investigation of a nonlinear model of a wind-driven ocean.J. Atmos. Sci.,20, 217–236.

    Article  Google Scholar 

  • Chang, K. I., K. Ide, M. Ghil, and C. C. A. Lai, 2001: Transition to aperiodic variability in a wind-driven doublegyre circulation model.J. Phys. Oceanogr.,31, 1260–1299.

    Article  Google Scholar 

  • Chen, S., and G. D. Doolen, 1998: Lattice Boltzmann method for fluid flows.Annual Review of Fluid Mechanics,30, 329–364.

    Article  Google Scholar 

  • Chen, S., Z. Wang, X. Shan, and G. Doolen, 1992: Lattice Boltzmann computational fluid dynamics in three dimensions.Journal of Statistical Physics,68, 379–400.

    Article  Google Scholar 

  • Dellar, P. J., 2001: Bulk and shear viscosities in lattice Boltzmann equations.Phys. Rev. (E),64, doi:10.1103/PhysRevE. 64.031203.

  • Feng Shide, Zhao Ying, Tsutahara Michihisa, and Ji Zhongzheng, 2002: Lattice Boltzmann model in rotational flow field.Chinese Journal of Geophysics,45(2), 170–175. (in Chinese)

    Google Scholar 

  • Frisch, U., B. Hasslacher, and Y. Pomeau, 1986: Latticegas automata for the Navier-Stokes equation.Phys. Rev. Lett.,56(14), 1505–1508.

    Article  Google Scholar 

  • He, X., X. Shan, and G. Doolen, 1998a: Discrete Boltzmann equation model for nonideal gases.Phys. Rev. Lett.,57, R13-R16.

    Google Scholar 

  • He, X., S. Chen, and G. D. Doolen, 1998b: A novel thermal model for the lattice Boltzmann method in incompressible limit.Journal of Computational Physics,146, 282–300.

    Article  Google Scholar 

  • Higuera, F., and J. Jiménez, 1989: Boltzmann approach to lattice gas simulations.Europhys. Lett.,9(7), 663–668.

    Article  Google Scholar 

  • Inamuro, T., M. Yoshino, and F. Ogino, 1997: Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number.Physics of Fluids,9(11), 3535–3542.

    Article  Google Scholar 

  • Jiang, S., F. F. Jin, and M. Ghil, 1995: Mutiple equilibria, periodic, and aperiodic solutions in a winddriven double-gyre, shallow-water model.J. Phys. Oceanogr.,25, 764–786.

    Article  Google Scholar 

  • Luo, D. H., and Y. Lu, 2000: The influence of negative viscosity on wind-driven, barotropic ocean circulation in a subtropical basin.J. Phys. Oceanogr.,30, 916–932.

    Article  Google Scholar 

  • Luo, L. S., 1998: Unified theory of lattice Boltzmann models for nonideal gases.Phys. Rev. Lett.,81(8), 1618–1621.

    Article  Google Scholar 

  • McNamara, G., and G. Zanetti, 1988: Use of the Boltzmann equation to simulate lattice-gas automata.Phys. Rev. Lett.,61, 2332–2335.

    Article  Google Scholar 

  • Meacham, S. P., 2000: Low-frequency variability in the wind-driven circulation.J. Phys. Oceanogr.,30, 269–293.

    Article  Google Scholar 

  • Qian, Y. H., D. d’Humières, and P. Lallemand, 1992: Lattice BGK models for Navier-Stokes equation.Europhys. Lett.,17(6), 479–484.

    Article  Google Scholar 

  • Salmon, R., 1999a: The lattice Boltzmann method as a basis for ocean circulation modeling.J. Mar. Res.,57, 503–535.

    Article  Google Scholar 

  • Salmon, R., 1999b: Lattice Boltzmann solutions of the three-dimensional planetary geostrophic equations.J. Mar. Res.,57, 847–884.

    Article  Google Scholar 

  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang, 2003: Low-frequency variability in shallowwater models of the wind-driven ocean circulation. Part I: Steady-state solution.J. Phys. Oceanogr.,33, 712–728.

    Article  Google Scholar 

  • Sterling, J. D., S. Chen, 1996: Stability analysis of lattice Boltzmann methods.Journal of Computational Physics,123, 196–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linhao, Z., Shide, F. & Shouting, G. Wind-driven ocean circulation in shallow water lattice Boltzmann model. Adv. Atmos. Sci. 22, 349–358 (2005). https://doi.org/10.1007/BF02918749

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918749

Key words

Navigation