Skip to main content

Advertisement

Log in

Non-hydrostatic unified model of the ocean with application to ice/ocean interaction modeling

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

The non-hydrostatic unified model of the ocean (NUMO) has been developed to advance model capability to realistically represent the dynamics and ice/ocean interactions in Greenland fjords, including an accurate representation of complex fjord geometries. To that end, NUMO uses high-order spectral element methods on unstructured grids to solve the incompressible Navier–Stokes equations complemented with heat and salinity transport equations. This paper presents the model’s description and discusses the formulation of ice/ocean Neumann boundary conditions based on the three-equation model. We validate the model on a range of test cases. The convergence study on the classical Kovasznay flow shows exponential convergence with arbitrary basis function polynomial order. The lock-exchange and density current cases show that the model results of buoyancy-driven flows solved with 2D and 3D unstructured meshes agree well with previously published findings. Finally, we show that a high-order simulation of an ice block immersed in saline water produces results that match both direct numerical simulation and laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdi, D.S., Giraldo, F.X.: Efficient construction of unified continuous and discontinuous galerkin formulations for the 3d euler equations. J. Comput. Phys. 320, 46–68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011). https://doi.org/10.1137/100791634

    Article  MathSciNet  MATH  Google Scholar 

  • Cantero, M.I., Lee, J., Balachandar, S., et al.: On the front velocity of gravity currents. J. Fluid Mech. 586, 1–39 (2007)

    Article  MATH  Google Scholar 

  • Carroll, D., Sutherland, D.A., Shroyer, E.L., et al.: Subglacial discharge-driven renewal of tidewater glacier fjords. J. Geophys. Res. Oceans 122(8), 6611–6629 (2017)

    Article  Google Scholar 

  • Catania, G., Stearns, L., Moon, T., et al.: Future evolution of Greenland’s marine-terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125(2), e2018JF004,873 (2020)

  • Cowton, T., Slater, D., Sole, A., et al.: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res. Oceans 120(2), 796–812 (2015)

    Article  Google Scholar 

  • Deville, M.O., Fischer, P.F., Mund, E.H.: High-order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  • Ezhova, E., Cenedese, C., Brandt, L.: Dynamics of three-dimensional turbulent wall plumes and implications for estimates of submarine glacier melting. J. Phys. Oceanogr. 48(9), 1941–1950 (2018)

    Article  Google Scholar 

  • Fischer, P.F.: An overlapping schwarz method for spectral element solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Fringer, O., Gerritsen, M., Street, R.: An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 14(3–4), 139–173 (2006)

    Article  Google Scholar 

  • Gayen, B., Griffiths, R.W., Kerr, R.C.: Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech. 798, 284–298 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Giraldo FX (2016) GNuMe: Galerkin numerical modeling environment. https://frankgiraldo.wixsite.com/mysite/gnume, accessed: 2022-01-31

  • Giraldo, F.X.: An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases: Analysis, Algorithms, and Applications, vol. 24. Springer Nature, Cham (2020)

    MATH  Google Scholar 

  • Härtel, C., Meiburg, E., Necker, F.: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418, 189–212 (2000)

  • Hiester, H., Piggott, M., Allison, P.: The impact of mesh adaptivity on the gravity current front speed in a two-dimensional lock-exchange. Ocean Model. 38(1–2), 1–21 (2011)

    Article  Google Scholar 

  • Holland, D.M., Jenkins, A.: Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29(8), 1787–1800 (1999)

    Article  Google Scholar 

  • Intergovernmental Oceanographic Commission.: The International Thermodynamic Equation of Seawater–2010: Calculation and Use of Thermodynamic Properties (2010)

  • Jackson, R.H., Straneo, F., Sutherland, D.A.: Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7(7), 503–508 (2014)

    Article  Google Scholar 

  • Jackson, R.H., Shroyer, E.L., Nash, J.D., et al.: Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations. Geophys. Res. Lett. 44(13), 6886–6894 (2017)

    Article  Google Scholar 

  • Jenkins, A.: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41(12), 2279–2294 (2011)

    Article  Google Scholar 

  • Jenkins, A., Hellmer, H.H., Holland, D.M.: The role of meltwater advection in the formulation of conservative boundary conditions at an ice-ocean interface. J. Phys. Oceanogr. 31(1), 285–296 (2001)

    Article  Google Scholar 

  • Josberger, E.G., Martin, S.: A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. J. Fluid Mech. 111, 439–473 (1981)

    Article  Google Scholar 

  • Kärnä, T., Kramer, S.C., Mitchell, L., et al.: Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations. Geosci. Model Develop. 11(11), 4359–4382 (2018)

    Article  Google Scholar 

  • Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Kerr, R.C., McConnochie, C.D.: Dissolution of a vertical solid surface by turbulent compositional convection. J. Fluid Mech. 765, 211–228 (2015)

    Article  Google Scholar 

  • Kimura, S., Holland, P.R., Jenkins, A., et al.: The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr. 44(12), 3099–3117 (2014)

    Article  Google Scholar 

  • Kopera, M.A., Giraldo, F.X.: Analysis of adaptive mesh refinement for imex discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations. J. Comput. Phys. 275, 92–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kopera, M.A., Giraldo, F.X.: Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations. J. Comput. Phys. 297, 90–103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kovasznay, L.: Laminar flow behind a two-dimensional grid. In: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, pp. 58–62 (1948)

  • MacAyeal, D.R.: Evolution of tidally triggered meltwater plumes below ice shelves. Oceanol. Antarctic Cont. Shelf 43, 133–143 (1985)

    Article  Google Scholar 

  • Marras, S., Kopera, M.A., Giraldo, F.X.: Simulation of shallow-water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility on the sphere. Q. J. R. Meteorol. Soc. 141(690), 1727–1739 (2015)

    Article  Google Scholar 

  • Marshall, J., Hill, C., Perelman, L., et al.: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. Oceans 102(C3), 5733–5752 (1997)

    Article  Google Scholar 

  • Monaghan, J., Cas, R., Kos, A., et al.: Gravity currents descending a ramp in a stratified tank. J. Fluid Mech. 379, 39–69 (1999)

    Article  MATH  Google Scholar 

  • Mondal, M., Gayen, B., Griffiths, R.W., et al.: Ablation of sloping ice faces into polar seawater. J. Fluid Mech. 863, 545–571 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Morton, B., Taylor, G.I., Turner, J.S.: Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234(1196), 1–23 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Özgökmen, T.M., Fischer, P.F., Duan, J., et al.: Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model. J. Phys. Oceanogr. 34(9), 2006–2026 (2004)

    Article  Google Scholar 

  • Piggott, M., Gorman, G., Pain, C., et al.: A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int. J. Numer. Meth. Fluids 56(8), 1003–1015 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Roquet, F., Madec, G., Brodeau, L., et al.: Defining a simplified yet realistic equation of state for seawater. J. Phys. Oceanogr. 45(10), 2564–2579 (2015)

    Article  Google Scholar 

  • Sciascia, R., Straneo, F., Cenedese, C., et al.: Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res. Oceans 118(5), 2492–2506 (2013)

    Article  Google Scholar 

  • Simpson, J., Britter, R.: The dynamics of the head of a gravity current advancing over a horizontal surface. J. Fluid Mech. 94(3), 477–495 (1979)

    Article  Google Scholar 

  • Slater, D.A., Goldberg, D.N., Nienow, P.W., et al.: Scalings for submarine melting at tidewater glaciers from buoyant plume theory. J. Phys. Oceanogr. 46(6), 1839–1855 (2016)

    Article  Google Scholar 

  • Slater, D.A., Straneo, F., Felikson, D., et al.: Estimating Greenland tidewater glacier retreat driven by submarine melting. Cryosphere 13(9), 2489–2509 (2019)

    Article  Google Scholar 

  • Straneo, F., Heimbach, P.: North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504(7478), 36–43 (2013)

    Article  Google Scholar 

  • Xu, Y., Rignot, E., Menemenlis, D., et al.: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53(60), 229–234 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The development of the NUMO model was funded by the U.S. Department of Energy awards DE-SC0014105 and DE-SC0015337. Michal Kopera is grateful to prof. Slawek Tulaczyk of UC Santa Cruz for support and constructive discussions.

Funding

The research leading to these results received funding from U.S. Department of Energy Office of Science, Biological and Environmental Research program under Grant Agreement No DE-SC0014105 and DE-SC0015337. Besides this funding, the authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal A. Kopera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopera, M.A., Gahounzo, Y., Enderlin, E.M. et al. Non-hydrostatic unified model of the ocean with application to ice/ocean interaction modeling. Int J Geomath 14, 2 (2023). https://doi.org/10.1007/s13137-022-00212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-022-00212-7

Keywords

Mathematics Subject Classification

Navigation