Skip to main content
Log in

Multisubunit receptors in the immune system and their association with the cytoskeleton: In search of functional significance

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Various multisubunit receptors of the immune system share similarities in structure and induce closely related signal transduction pathways upon ligand binding. Examples include the T cell antigen receptor (TCR), the B cell antigen receptor (BCR), and the high-affinity receptor for immunoglobulin E (FcεRI). Although these receptors are devoid of intrinsic kinase activity, they can associate with a similar array of intracellular kinases, phosphatases and other signaling molecules. Furthermore, these receptor complexes all form an association with the cytoskeletal matrix. In this review, we compare the structural and functional characteristics of the TCR, BCR and FcεRI. We examine the role of the cytoskeleton in regulating receptor-mediated signal transduction, as analyzed in other well-characterized receptors, including the epidermal growth factor receptor and integrin receptors. On the basis of this evidence, we review the current data depicting a cytoskeletal association for multisubunit immune system receptors and explore the potential bearing of this interaction on signaling function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao A: Signaling mechanisms in T cells. Crit Rev Immunol 1991;10:495–519.

    PubMed  CAS  Google Scholar 

  2. Weiss A, Littman D: Signal transduction by lymphocyte antigen receptors. Cell 1994;76:263–274.

    PubMed  CAS  Google Scholar 

  3. Irving BA, Chan AC, Weiss A: Functional characterization of a signal transducing motif present in the T cell antigen receptor ζ chain. J Exp Med 1993;177:1093–1103.

    PubMed  CAS  Google Scholar 

  4. Letourneur F, Klausner RD: T cell and basophil activation through the cytoplasmic tail of T cell receptor ζ family proteins. Proc Natl Acad Sci USA 1991;88:8905–8909.

    PubMed  CAS  Google Scholar 

  5. Reth M: Antigen receptor tail clue. Nature 1989;338:383–384.

    PubMed  CAS  Google Scholar 

  6. Weiss A: T cell antigen receptor signal transduction. A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993;73:209–212.

    PubMed  CAS  Google Scholar 

  7. Clark MR, Campbell KS, Kazlauskas A, Johnson SA, Hertz M, Potter TA, Pleiman C, Cambier JC: The B cell antigen receptor complex: Association of Ig-α and Ig-β with distinct cytoplasmic effectors. Science 1992; 258:123–126.

    PubMed  CAS  Google Scholar 

  8. Samelson LE, Klausner RD: Tyrosine kinases and tyrosine-based activation motifs: Current research on activation via the T cell antigen receptor. J Biol Chem 1992;267:24913–24916.

    PubMed  CAS  Google Scholar 

  9. Kolanus W, Romeo C, Seed B: Lineage-independent activation of immune system effector function by myeloid Fc receptors. EMBO J 1992;11:4861–4868.

    PubMed  CAS  Google Scholar 

  10. Letourneur F, Klausner RD: Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3ε. Science 1992;255:79–82.

    PubMed  CAS  Google Scholar 

  11. Romeo C, Amiot M, Seed B: Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor ζ chain. Cell 1992;68:889–897.

    PubMed  CAS  Google Scholar 

  12. Barber EK, Dasgupta JD, Schlossman S, Trevillyon J, Rudd C: The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc Natl Acad Sci USA 1989; 86:3277–3281.

    PubMed  CAS  Google Scholar 

  13. Qian D, Griswold-Penner I, Rosner MR, Fitch FW: Multiple compronents of the T cell antigen receptor complex become tyrosine phosphorylated upon activation. J Biol Chem 1993;268:4488–4493.

    PubMed  CAS  Google Scholar 

  14. Wegener AM, Letourneur F, Moeveler A, Brocker T, Luton F, Malissen B: The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 1992;68:83–95.

    PubMed  CAS  Google Scholar 

  15. Rudd CE, Trevillyon JM, Dasgupta JD, Wong LL, Schlossman S: The CD4 receptor is complexed in detergent lysate to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci USA 1988; 85:5190–5194.

    PubMed  CAS  Google Scholar 

  16. Veillette A, Bookman MA, Morak EM, Bolen JB: The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 1988;55:301–308.

    PubMed  CAS  Google Scholar 

  17. Samelson LE, Phillips AF, Luong ET, Klausner RD: Association of the Fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc Natl Acad Sci USA 1990;87:4358–4362.

    PubMed  CAS  Google Scholar 

  18. Timson Gauen LK, Kong ANT, Smelson LE, Shaw AS: p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain. Mol Cell Biol 1992;12:5438–5446.

    Google Scholar 

  19. Veillette A, Bookman MA, Horak EM, Samelson LE, Bolen JB: Signal transduction through the CD5 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 1989;338:257–259.

    PubMed  CAS  Google Scholar 

  20. Luo K, Sefton BM: Activatedlck tyrosine protein kinase stimulates antigen-independent interleukin-2 production in T cells. Mol Cell Biol 1992;12:4724–2732.

    PubMed  CAS  Google Scholar 

  21. Da Silva AJ, Yamamoto M, Zalvan CH, Rudd CE: Engagement of the TCR/CD3 complex stimulates p59fyn(T) activity: Detection of associated proteins at 72 and 120–130 kD. Mol Immunol 1992;29:1417–1425.

    PubMed  Google Scholar 

  22. Tsygankov AT, Broker BM, Fargnoli J, Ledbetter JA, Bolen J: Activation of tyrosine kinase p60fyn following T cell antigen receptor crosslinking. J Biol Chem 1992;267:18259–18262.

    PubMed  CAS  Google Scholar 

  23. Chan AC, Iwashima M, Turck CW, Weiss A: ZAP-70:A 70kD proteintyrosine kinase that associates with the TCR ζ chain. Cell 1992;71:649–662.

    PubMed  CAS  Google Scholar 

  24. Wange RL, Malek SN, Desiderio S, Samelson LE: Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor ζ and CD3ε from activated Jurkat T cells. J Biol Chem 1993;268:19797–19801.

    PubMed  CAS  Google Scholar 

  25. Kolanus W, Romeo C, Seed B: T cell activation by clustered tyrosine kinases. Cell 1993;74:171–183.

    PubMed  CAS  Google Scholar 

  26. Ravichandran KS, Lee KK, Songyang Z, Cantley LC, Burn P, Burakoff SJ: Interaction of She with the ζ chain of the T cell receptor upon T cell activation. Science 1993;262:902–904.

    PubMed  CAS  Google Scholar 

  27. Downward J, Graves JD, Warne PM, Payter S, Cantrell DA: Stimulation of p21ras upon T cell activation. Nature 1990;346:719–723.

    PubMed  CAS  Google Scholar 

  28. Ostergaard HL, Shackelford DA, Hurley TR, Johnson P, Hyman R, Sefton BM, Trowbridge IS: Expression of CD45 alters phosphorylation of thelck-encoded tyrosine protein kinase in murine lymphoma T cell lines. Proc Natl Acad Sci USA 1989; 86:8959–8963.

    PubMed  CAS  Google Scholar 

  29. Mustelin T, Coggeshall KM, Altman A: Rapid activation of the T cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci USA 1989;86:6302–6306.

    PubMed  CAS  Google Scholar 

  30. Chow LML, Fournel M, Davidson D, Veillette A: Negative regulation of T cell receptor signalling by tyrosine protein kinase p50csk. Nature 1993;365:156–160.

    PubMed  CAS  Google Scholar 

  31. Furukawa T, Itoh M, Krueger NX, Streuli M, Saito H: Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 ζ chain. Proc Natl Acad Sci USA 1994;91:10928–10932.

    PubMed  CAS  Google Scholar 

  32. Jain J, McCaffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL, Curran T, Rao A: The T cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 1993;365:352–355.

    PubMed  CAS  Google Scholar 

  33. Boise LH, Petryniak B, Mao X, June CH, Wang CY, Lindsten T, Bravo R, Kovary K, Leiden JM, Thompson CB: The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB. Mol Cell Biol 1993;13:1911–1919.

    PubMed  CAS  Google Scholar 

  34. Jain J, McCaffrey PG, Valge-Archer VE, Rao A: Nuclear factor of activated T cells contains Fos and Jun. Nature 1992;356:801–804.

    PubMed  CAS  Google Scholar 

  35. Northrop JP, Ullman KS, Crabtree GR: Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NFAT) complex. J Biol Chem 1993;268:2917–2923.

    PubMed  CAS  Google Scholar 

  36. Prasad KVS, Janssen O, Kapeller R, Raab M, Cantley LC, Rudd C: Srehomology 3 domain of protein kinase p59fyn mediated binding to phosphatidylinositol 3-kinase in T cells. Proc Natl Acad Sci USA 1993; 90:7366–7370.

    PubMed  CAS  Google Scholar 

  37. Prasad KVS, Kapeller R, Janssen O, Repke H, Duke-Cohan JS, Cantley LC, Rudd CE: Phosphatidylinositol (PI) 3-kinase and PI 4-kinase binding to the CD4-p56lck complex: The p56lck SH3 domain binds to PI 3-kinase but not PI 4-kinase. Mol Cell Biol 1993;13:7708–7717.

    PubMed  CAS  Google Scholar 

  38. Pleiman CM, Clark MR, Timson-Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC: Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p56lyn which interact with the effector molecules phospholipase C-γ2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. Mol Cell Biol 1993;13:5877–5887.

    PubMed  CAS  Google Scholar 

  39. Vogel LB, Fujita DJ: The SH3 domain of p56lck is involved in binding to phosphatidylinositol 3′-kinase from T lymphocytes. Mol Cell Biol 1993;13:7408–7417.

    PubMed  CAS  Google Scholar 

  40. Rudd CE, Janssen O, Cai YC, da Silva AJ, Raab M, Prasad KVS: Two-step TCRζ/CD3-CD4 and CD28 signaling in T cells: SH2/SH3 domains, protein-tyrosine and lipid kinases. Immunol Today 1994;15:225–234.

    PubMed  CAS  Google Scholar 

  41. Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J: SH3 domains direct cellular localization of signaling molecules. Cell 1993;74:83–91.

    PubMed  CAS  Google Scholar 

  42. Pleiman CM, D'Ambrosio D, Cambier J: The B-cell antigen receptor complex: Structure and signal transduction. Immunol Today 1994;15:393–399.

    PubMed  CAS  Google Scholar 

  43. Terashima M, Kim KM, Adachi T, Nielsen PJ, Reth M, Köhler G, Lamers MC The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J 1994;13:3782–3792.

    PubMed  CAS  Google Scholar 

  44. Kim KM, Adachi T, Nielsen PJ, Terashima M, Lamers MC, Köhler G, Reth M: Two new proteins preferentially associated with membrane immunoglobulin D. EMBO J 1994;13:3793–3800.

    PubMed  CAS  Google Scholar 

  45. Kim KM, Alber G, Weiser P, Reth M: Differential signaling through the Ig-α and Ig-β components of the B cell antigen receptor. Eur J Immunol 1993;23:911–916.

    PubMed  CAS  Google Scholar 

  46. DeFranco AL, Blum JH, Stevens TL, Law DA, Chan VWF, Fov SP, Datta SK, Matsuuchi L: Structure and function of the B-cell antigen receptor, in Samelson LE (ed): Lymphocyte Activation. Chem Immun Basel, Karger, 1994, vol 59, pp 156–169.

    Google Scholar 

  47. Sanchez M, Misulovin Z, Burkhardt AL, Mahajan S, Costa T, Franke R, Bolen JB, Nussenzweig M: Signal transduction by immunoglobulin is mediated through Igα and Igβ. J Exp Med 1993;178:1049–1055.

    PubMed  CAS  Google Scholar 

  48. Pleiman CM, Abrams C, Gauen LT, Bedzyk W, Jongstra J, Shaw AS, Cambier JC: Distinct p53/56lyn p59fyn domains associate with nonphosphorylated and phosphorylated Ig-α. Proc Natl Acad Sci USA 1994; 91:4268–4272.

    PubMed  CAS  Google Scholar 

  49. Burkhardt AL, Costa T, Misulovin Z, Stealy B, Bolen JB, Nussenzweig MC: Igα and Igβ are functionally homologous to the signaling proteins of the T cell receptor. Mol Cell Biol 1994;14:1095–1103.

    PubMed  CAS  Google Scholar 

  50. Clark MR, Johnson SA, Cambier JC: Analysis of Ig-α tyrosine kinase interaction reveals two levels of binding specificity and tyrosine phosphorylated Ig-α stimulation of Fyn activity. EMBO J 1994;13:1911–1919.

    PubMed  CAS  Google Scholar 

  51. Cooper JA, Howell B: The when and how ofsrc regulation. Cell 1993;73:1051–1054.

    PubMed  CAS  Google Scholar 

  52. da Silva AJ, Janseen O, Rudd CE: T cell receptor ζ/CD3-p59fyn(T)-associated p120/130 binds to the SH2 domain of p59fyn(T). J Exp Med 1993; 178:2107–2113.

    PubMed  Google Scholar 

  53. Hutchcroft JE, Harrison ML, Geuhlen RL: Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor. J Biol Chem 1992;267:8613–8619.

    PubMed  CAS  Google Scholar 

  54. Law DA, Chan VWF, Datta SK, De-Franco AL: B cell antigen receptor motifs have redundant signalling capabilities and bind the tyrosine kinases PTK72, Lyn and Fyn. Curr Biol 1993;3:645–657.

    PubMed  CAS  Google Scholar 

  55. van Oers NSC, Killeen N, Weiss A: ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR ζ in murine thymocytes and lymph node T cells. Immunity 1994; 1:675–685.

    PubMed  Google Scholar 

  56. Takata M, Sabe H, Hata A, Inazu T, Homma Y, Nukada T, Yamamura H, Kurosaki T: Tyrosine kinases Lyn and Syk regulate B cell receptorcoupled Ca2+ mobilization through distinct pathways. EMBO J 1994; 13:1341–1349.

    PubMed  CAS  Google Scholar 

  57. Cambier JC: Signal transduction by T- and B-cell antigen receptors: Converging structures and concepts. Curr Opin Immunol 1992;4:257–264.

    PubMed  CAS  Google Scholar 

  58. Schlessinger J: How receptor tyrosine kinases activateras. Trends Biochem Sci 1993;18:273–275.

    PubMed  CAS  Google Scholar 

  59. Ridley AJ: Membrane ruffling and signal transduction. Bioessays 1994; 16:321–327.

    PubMed  CAS  Google Scholar 

  60. Ravetch JV, Kinet JP: Fc receptors. Annu Rev Immunol 1991;9:457–492.

    PubMed  CAS  Google Scholar 

  61. Bieber T, de la Salle H, Wollenberg A, Hakimi J, Chizzonite R, Ring J, Hanau D, de la Salle C: Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (FcεR1). J Exp Med 1992;175:1285–1290.

    PubMed  CAS  Google Scholar 

  62. Wang B, Rieger A, Kilgus O, Ochial K, Maurer D, Födinger D, Kinet JP, Sting G: Epidermal Langerhans cells from normal human skin bind monomeric IgE via FcεR1. J Exp Med 1992;175:1353–1365.

    PubMed  CAS  Google Scholar 

  63. Sandor M, Lynch RG: Lymphocyte Fc receptors: The special case of T cells. Immunol Today 1993;14:227–231.

    PubMed  CAS  Google Scholar 

  64. Hakimi J, Seals C, Kondas JA, Pettine L, Danho W, Kochan J: The α subunit of the human IgE receptor (FcεR1) is sufficient for high affinity IgE binding. J Biol Chem 1990;265:22079–22081.

    PubMed  CAS  Google Scholar 

  65. Blank U, Ra C, Kinet JP: Characterization of truncated α chain products from human, rat and mouse high affinity receptor for immunoglobulin E. J Biol Chem 1991;266:2639–2646.

    PubMed  CAS  Google Scholar 

  66. Metzger H, Varin-Blank N: Surface expression of mutated subunits of the high affinity mast cell receptor of IgE. J Biol Chem 1990;265:15685–15694.

    PubMed  Google Scholar 

  67. Romeo C, Seed B: Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 1991;64:1037–1046.

    PubMed  CAS  Google Scholar 

  68. Adamczewski M, Kinet JP: The high affinity receptor for immunoglobulin E; in Samelson LE (ed): Lymphocyte Activation. Chem Immunol. Basel, Karger, 1994, vol 59, pp 173–185.

    Google Scholar 

  69. Bonnerot C, Amigorena S, Choquet D, Paulovich R, Choukroun V, Fridman WH: Role of associated γ-chain in tyrosine kinase activation via murine FCγRIII. EMBO J 1992; 11:2747–2757.

    PubMed  CAS  Google Scholar 

  70. Alber G, Miller L, Jelsema CL, Varin-Blank N, Metzger H: Structure-function relationships in the mast cell high affinity receptor for IgE role of the cytoplasmic domains and of the β subunit. J Biol Chem 1991; 266:22613–22620.

    PubMed  CAS  Google Scholar 

  71. Huong MM, Indik Z, Bras LF, Hoxie JA, Schreiber AD, Brugge JS: Activation of FcγRII induces tyrosine phosphorylation of multiple proteins including FcγRII. J Biol Chem 1992;267:5467–5472.

    Google Scholar 

  72. Paolini R, Jouvin MH, Kinet JP: Phosphorylation and dephosphorylation of the high affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature 1991;353:855–858.

    PubMed  CAS  Google Scholar 

  73. O'Shea JJ, Weissman AM, Kennedy ICS, Ortaldo JR: Engagement of the natural killer cell IgG Fc receptor results on tyrosine phosphorylation of the ζ chain. Proc Natl Acad Sci USA 1991;88:350–354.

    PubMed  Google Scholar 

  74. Vivier E, Morin P, O'Brian C, Druker B, Schlossman S, Anderson P: Tyrosine phosphorylation of the FcRIII (CD 16): ζ complex in human natural killer cells. J Immunol 1992; 146:206–210.

    Google Scholar 

  75. Pribluda VS, Metzger H: Transmembrane signaling by the high affinity IgE receptor on membrane preparations. Proc Natl Acad Sci USA 1992;89:11446–11450.

    PubMed  CAS  Google Scholar 

  76. Eiseman E, Bolen JB: Engagement of the high affinity IgE receptor activates Src protein-related tyrosine kinases. Nature 1992;355:78–80.

    PubMed  CAS  Google Scholar 

  77. Jouvin MHE, Adamczewski M, Numerof R, Letourneur O, Valle A, Kinet JP: Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor. J Biol Chem 1994;269:5918–5925.

    PubMed  CAS  Google Scholar 

  78. Eiseman E, Bolen JB: Signal transduction by the cytoplasmic domains of FcεRI-γ and TCR-ζ in rat basophilic leukemia cells. J Biol Chem 1992;267:21027–21032.

    PubMed  CAS  Google Scholar 

  79. Kawakami Y, Yao L, Miura T, Tsukada S, Witte ON, Kawakini T: Tyrosine phosphorylation and activation of bruton tyrosine kinase upon FcεRI cross-linking. Mol Cell Biol 1994;14:5108–5113.

    PubMed  CAS  Google Scholar 

  80. den Hartigh JC, van Bergen en Henegouwen PMP, Verkleij AJ, Boonstra J: The EGF receptor is an actinbinding protein. J Cell Biol 1992; 119:349–355.

    Google Scholar 

  81. Gronowski AM, Bertics PJ: Evidence for the potentiation of epidermal growth factor receptor tyrosine kinase activity by association with the detergent-insoluble cellular cytoskeleton: Analysis of intact and carboxy-terminally trucated receptors. Endocrinology 1993;133:2838–2846.

    PubMed  CAS  Google Scholar 

  82. Lemmon MA, Schlessinger J: Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci 1994;19:459–463.

    PubMed  CAS  Google Scholar 

  83. Egon SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA: Association of SOS Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993;363:45–51.

    Google Scholar 

  84. Prendergast GC, Gibbs JB: Pathways of Ras function: connections to the actin cytoskeleton. Adv Cancer Res 1993;62:19–64.

    PubMed  CAS  Google Scholar 

  85. Downward J: Rac and Rho in tune. Nature 1992;359:273–274.

    PubMed  CAS  Google Scholar 

  86. Ridley AJ, Paterson MF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein Rac regulates growth, factor-induced membrane ruffling. Cell 1992;70:401–410.

    PubMed  CAS  Google Scholar 

  87. Ridley AJ, Hall A: The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992;70:389–399.

    PubMed  CAS  Google Scholar 

  88. Bretscher A: Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 1989;108:921–930.

    PubMed  CAS  Google Scholar 

  89. Egerton M, Burgess WH, Chen D, Druker BJ, Bretscher A, Samelson LE: Identification of ezrin as an 81-kDa tyrosine-phosphorylated protein in T cells. J Immunol 1992;149:1847–1852.

    PubMed  CAS  Google Scholar 

  90. Seedorf K, Kosta G, Lammers R, Bashkin P, Daly R, Burgess WH, van der Bleik AM, Schlessinger J, Ullrich A: Dynamin binds to SH3 domains of phospholipase Cγ and GRB-2. J Biol Chem 1994;269: 16009–16014.

    PubMed  CAS  Google Scholar 

  91. Goldschmidt-Clermont PJ, Janmey PA: Profilin, a weak CAP for actin and RAS. Cell 1991;66:419–421.

    PubMed  CAS  Google Scholar 

  92. Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD: The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990;247:1575–1578.

    PubMed  CAS  Google Scholar 

  93. Heldman AW, Goldschmidt-Clermont PJ: Cell signaling and motile activity. Symp Soc Exp Biol 1993; 47:317–324.

    PubMed  CAS  Google Scholar 

  94. Sastry SK, Horwitz AF: Integrin cytoplasmic domains: Mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Curr Opin Cell Biol 1993;5:819–831.

    PubMed  CAS  Google Scholar 

  95. Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K: Interaction of plasma membrane fibronectin receptor with talin—A transmembrane linkage. Nature 1986; 320:531–533.

    PubMed  CAS  Google Scholar 

  96. Otey CA, Vasquez GB, Burridge K, Erickson BW: Mapping of the α-actinin binding site within the {ie116-1} integrin cytoplasmic domain. J Biol Chem 1993;268:21193–21197.

    PubMed  CAS  Google Scholar 

  97. Burridge K, Mangeat P: An interaction between vinculin and talin. Nature 1984;308:744–746.

    PubMed  CAS  Google Scholar 

  98. Sadler I, Crawford AW, Michelsen JW, Beckerle MC: Zyxin and cCRP: Two interactive LIM domain proteins associated with the cytoskeleton J Cell Biol 1992;119:1573–1587.

    PubMed  CAS  Google Scholar 

  99. Davis S, Lu ML, Lo SH, Lin S, Butler JA, Druker BJ, Roberts TM, An Q, Chen LB: Presence of an SH2 domain in the actin-binding protein tensin. Science 1991; 252:712–715.

    PubMed  CAS  Google Scholar 

  100. Rohrschneider LR: Adhesion plaques of Rous sarcoma virustransformed cells contain thesrc gene product. Proc Natl Acad Sci USA 1980;77:3514–3518.

    PubMed  CAS  Google Scholar 

  101. Jaken S, Leach K, Klauck T: Association of type 3 protein kinase C with focal contacts in rat embryo fibroblasts. J Cell Biol 1989;109: 697–704.

    PubMed  CAS  Google Scholar 

  102. Zhang J, Fry MJ, Waterfield MD, Jakens S, Liao L, Fox JEB, Rittenhouse SE: Activated phosphoinositide 3-kinase associated with the membrane skeleton in thrombinexposed platelets. J Biol Chem 1992;267:4686–4692.

    PubMed  CAS  Google Scholar 

  103. Beckerle MC, Burridge K, DeMartino GN, Croall DE: Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell 1987;51:569–577.

    PubMed  CAS  Google Scholar 

  104. Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS: Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125 FAK. J Cell Biol 1992;119:905–912.

    PubMed  CAS  Google Scholar 

  105. Whitney GS, Chan PY, Blake J, Cosand WL, Neubauer MG, Aruffo A, Kanner SB: Human T and B lymphocytes express a structurally conserved focal adhesion kinase. DNA Cell Biol 1993;12:823–830.

    PubMed  CAS  Google Scholar 

  106. Turner CE: Paxillin: A cytoskeletal target for tyrosine kinases. Bioassays 1994;16:47–52.

    CAS  Google Scholar 

  107. Turner CE, Glenney JR Jr, Burridge K: Paxillin: A new vinculin-binding protein present in focal adhesions. J Cell Biol 1990;111:1059–1068.

    PubMed  CAS  Google Scholar 

  108. Mauro LJ, Dixon JE: ‘Zip codes’ direct intracellular protein phosphatases to the correct cellular ‘address’. Trends Biochem Sci 1994; 19:151–155.

    PubMed  CAS  Google Scholar 

  109. Fox JE, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS: On the role of the platelet membrane skeleton in mediating signal transduction: Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21 ras GTPase-activating protein with the membrane skeleton. J Biol Chem 1993;268:25973–25984.

    PubMed  CAS  Google Scholar 

  110. Clark EA, Brugge JS: Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol Cell Biol 1993;13:1863–1871.

    PubMed  CAS  Google Scholar 

  111. Kellie S, Horvath AR, Felice G, Anand R, Murphy C, Westwick J: The interaction of the tyrosine kinase pp60src with membrane and cytoskeletal components. Symp Soc Exp Biol 1993;47:267–282.

    PubMed  CAS  Google Scholar 

  112. Fischer TH, Gatling MN, Lacal J, White GC II: rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J Biol Chem 1990; 265:19405–19408.

    PubMed  CAS  Google Scholar 

  113. Grondin P, Plantavid M, Sultan C, Breton M, Mauco G, Chap H: Interaction of pp60c-src, phospholipase C, inositol-lipid, and diacylglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem 1991;266:15709–15715.

    Google Scholar 

  114. Newman PJ, Hillery CA, Albrecht R, Parise LV, Berndt MC, Mazurov AV, Dunlop LC, Zhang J, Rittenhouse SE: Activation-dependent changes in human platelet PECAM-1: Phosphorylation, cytoskeletal association and surface membrane redistribution. J Cell Biol 1992;119:239–246.

    PubMed  CAS  Google Scholar 

  115. Fox JEB, Phillips DR: Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 1981;292:650–652.

    PubMed  CAS  Google Scholar 

  116. Casella JF, Flanagan MD, Lin S: Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 1981;293:301–305.

    Google Scholar 

  117. Fox JEB, Boyles JK, Reynolds CC, Phillips DR: Actin filament content and organization in costimulated platelets. J Cell Biol 1984;98: 1985–1991.

    PubMed  CAS  Google Scholar 

  118. Hartwig JH: Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 1992;118: 1421–1442.

    PubMed  CAS  Google Scholar 

  119. Cassimeris L, Safer D, Nachmias VT, Zigmond SH: Thymosin {ie117-1} sequesters the majority of G-actin in resting human polymorphonuclear leukocytes. J Cell Biol 1992;119: 1261–1270.

    PubMed  CAS  Google Scholar 

  120. Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD: The control of actin nucleotide exchange by thymosin beta 4 and profilin: A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 1992;3: 1015–1024.

    PubMed  CAS  Google Scholar 

  121. Fox JEB, Phillips DR: Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures in human platelets. J Biol Chem 1981;257: 4120–4126.

    Google Scholar 

  122. Stark F, Golla R, Nachmias VT: Formation and contraction of a microfilament shell in saponinpermeabilized platelets. J Cell Biol 1991;112:903–913.

    PubMed  CAS  Google Scholar 

  123. Geiger B, Rosen D, Berke G: Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol 1982; 95:137–143.

    PubMed  CAS  Google Scholar 

  124. Kupfer A, Singer SJ, Dennert G: The mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes: Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J Exp Med 1986;163:489–498.

    PubMed  CAS  Google Scholar 

  125. Burn P, Kupfer A, Singer SJ: Dynamic membrane-cytoskeletal interactions: Specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes. Proc Natl Acad Sci USA 1988;85:497–501.

    PubMed  CAS  Google Scholar 

  126. Marano N, Holowka D, Baird B: Bivalent binding of an anti-CD3 antibody to Jurkat cells induces association of the T cell receptor complex with the cytoskeleton. J Immunol 1989;143:931–938.

    PubMed  CAS  Google Scholar 

  127. Geppert TD, Lipsky PE: Association of various T cell-surface molecules with the cytoskeleton. J Immunol 1991;146:3298–3305.

    PubMed  CAS  Google Scholar 

  128. Caplan S, Zeliger S, Wang L, Baniyash M: Cell surface expressed T cell antigen receptor ξ chain is associated with the cytoskeleton. Proc Natl Acad Sci USA in press.

  129. Brock MA, Chrest F: Differential regulation of actin polymerization following activation of resting T lymphocytes from young and aged mice. J Cell Physiol 1993;157:367–378.

    PubMed  CAS  Google Scholar 

  130. Gregorio CC, Kubo RT, Bankert RB, Repasky EA: Translocation of spectrin and protein kinase C to a cytoplasmic aggregate upon lymphocyte activation. Proc Natl Acad Sci USA 1992;89:4947–4951.

    PubMed  CAS  Google Scholar 

  131. Lokeshwar VB, Bourguignon LYW: Tyrosine phosphatase activity of lymphoma CD45 (GP180) is regulated by a direct interaction with the cytoskeleton. J Biol Chem 1992;267:21551–21557.

    PubMed  CAS  Google Scholar 

  132. Offringa R, Bierer BE: Association of CD2 with tubulin. J Biol Chem 1993;268:4979–4988.

    PubMed  CAS  Google Scholar 

  133. Ley SC, Marsh M, Bebbington CR, Proudfoot K, Jordan P: Distinct intracellular localization of Lck and Fyn protein tyrosine kinases in human T lymphocytes. J Cell Biol 1994;125:639–649.

    PubMed  CAS  Google Scholar 

  134. Gassmann M, Amrein KE, Flint NA, Schraven B, Burn P: Identification of a signaling complex involving CD2, ξ chain and p59fyn in T lymphocytes. Eur J Immunol 1994;24:139–144.

    PubMed  CAS  Google Scholar 

  135. DeBell KE, Conti A, Alava MA, Hoffman T, Bonvini E: Microfilament assembly modulates phospholipase C-mediated signal transduction by the TCR/CD3 in murine T helper lymphocytes. J Immunol 1992;149:2271–2280.

    PubMed  CAS  Google Scholar 

  136. Geppert TD, Lipsky PE: Regulatory role of microfilaments in the induction of T4 cell proliferation and interleukin 2 production. Cell Immunol 1990;131:205–218.

    PubMed  CAS  Google Scholar 

  137. Parsey MV, Lewis GK: Actin polymerization and pseudopod reorganization accompany anti-CD3-induced growth arrest in Jurkat T cells. J Immunol 1993;151:1881–1893.

    PubMed  CAS  Google Scholar 

  138. Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A: Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy: Role of T cell actin cytoskeleton. J Exp Med 1995;181:577–584.

    PubMed  CAS  Google Scholar 

  139. Braun J, Hochman PS, Unanue ER: Ligand-induced association of surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B lymphocyte. J Immunol 1982;128:1198–1204.

    PubMed  CAS  Google Scholar 

  140. Woda BA, McFadden ML: Ligand-induced association of rat lymphocyte membrane proteins with the detergent-insoluble lymphocyte cytoskeletal matrix. J Immunol 1983;131:1917–1919.

    PubMed  CAS  Google Scholar 

  141. Woda BA, Woodin MB: The interaction of lymphocyte membrane proteins with the lymphocyte cytoskeletal matrix. J Immunol 1984;133:2767–2771.

    PubMed  CAS  Google Scholar 

  142. Albrecht DL, Noelle RJ: Membrane Ig-cytoskeletal interactions: Flow cytofluorometric and biochemical analysis of membrane IgM-cytoskeletal interactions. J Immunol 1988;141:3915–3922.

    PubMed  CAS  Google Scholar 

  143. Goroff DK, Stall A, Mond JJ, Finkelman FD: In vitro and in vivo B lymphocyte activating properties of monoclonal anti-δ antibodies. I: Determinants of B lymphocyte-activating properties. J Immunol 1986;136:2382–2392.

    PubMed  CAS  Google Scholar 

  144. Rothstein TL: Stimulation of B cells by sequential addition of antiimmunoglobulin antibody and cytochalasin. J Immunol 1986;136: 813–816.

    PubMed  CAS  Google Scholar 

  145. Klein DP, Galea S, Jongstra J: The lymphocyte-specific protein LSPI is associated with the cytoskeleton and co-caps with membrane IgM. J Immunol 1990;145:2967–2973.

    PubMed  CAS  Google Scholar 

  146. Williams GT, Peaker CJG, Patel KJ, Neuberger MS: the α/β sheath and its cytoplasmic tyrosines are required for signaling by the B-cell antigen receptor but not for capping or for serine/threonine-kinase recruitment. Proc Natl Acad Sci USA 1994;918:474–478.

    Google Scholar 

  147. McCloskey MA: Immobilization of Fcε receptors by wheat germ agglutinin: Receptor dynamics in IgE-mediated signal transduction. J Immunol 1993;151:3237–3251.

    PubMed  CAS  Google Scholar 

  148. Robertson D, Holowka D, Baird B: Cross-linking of immunoglobulin E-receptor complexes induces their interaction with the cytoskeleton of rat basophilic leukemia cells. J Immunol 1986;136: 4565–4572.

    PubMed  CAS  Google Scholar 

  149. Apgar JR: Antigen-induced crosslinking of the IgE receptor leads to an association with the detergentinsoluble membrane skeleton of rat basophilic leukemia (RBL-2H3) cells. J Immunol 1990;145: 3814–3822.

    PubMed  CAS  Google Scholar 

  150. Mao SY, Alber G, Rivera J, Kochan J, Metzger H: Interaction of aggregated native and mutant IgE receptors with the cellular skeleton. Proc Natl Acad Sci USA 1992; 89:222–226.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplan, S., Baniyash, M. Multisubunit receptors in the immune system and their association with the cytoskeleton: In search of functional significance. Immunol Res 14, 98–118 (1995). https://doi.org/10.1007/BF02918171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918171

Key Words

Navigation