Skip to main content

Novel Immunomodulatory Pathways in the Immunoglobulin Superfamily

  • Chapter
  • First Online:
Novel Immunotherapeutic Approaches to the Treatment of Cancer
  • 1483 Accesses

Abstract

The immunoglobulin superfamily (IgSF) is a large and highly diverse assemblage of related proteins that regulate many different biological processes. The name of the family is based on early studies demonstrating sequence similarity between the antibody (immunoglobulin) variable and constant domains, showing an ancestral link, and the subsequent identification of proteins with similar sequences, suggesting broad diversification and evolution (Williams and Barclay, Annu Rev Immunol 6: 381–405, 1988). Antibodies, the T cell receptors (TCR), and the major histocompatibility complex (MHC), among others, are made up of multiple Ig domain chains that assemble to form the final protein, facilitating antigen presentation/recognition (Fig. 2.1a). The individual Ig domains within this family contain a conserved intra-chain disulfide bond that serves to stabilize the domain. These individual structural domains consist of two “sheets” that consist of beta-strands, as illustrated for a generic Ig-domain (Fig. 2.1b). Many IgSF proteins consist of single chains that string together one or more Ig-domains, each with its own intrinsic features. IgSF proteins can have from one to many such domains, and these are characterized as variable (V) domains, as in Fig. 2.1b, or constant (C) domains based on sequence and structural similarity to the domains characterized in antibodies (Fig. 2.1a). Beyond the conserved core motifs, the family has diverged drastically, and many unique and unusual structural features have evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen presenting cells

CEACAM1:

Carcinoembryonic antigen-related cell adhesion molecule 1

DC:

Dendritic cells

ICOS:

Inducible T-cell costimulator

IgSF:

Immunoglobulin superfamily

ITIM:

Immunoreceptor tyrosine-based inhibition motif

LAG-3:

Lymphocyte activation gene-3

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

PS:

Phosphatidylserine

PVR:

Poliovirus receptor

TCR:

T cell receptor

TIGIT:

T cell immunoglobulin and ITIM domain

TIL:

Tumor-infiltrating lymphocytes

TIM:

T cell immunoglobulin mucin

VISTA:

V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation

References

  • Angiari, S., Donnarumma, T., Rossi, B., Dusi, S., Pietronigro, E., Zenaro, E., Della Bianca, V., Toffali, L., Piacentino, G., Budui, S., Rennert, P., Xiao, S., Laudanna, C., Casasnovas, J.M., Kuchroo, V.K., Constantin, G.: TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity 40, 542–553 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aruffo, A., Seed, B.: Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. U. S. A. 84, 8573–8577 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn, S.D., Shin, H., Haining, W.N., Zou, T., Workman, C.J., Polley, A., Betts, M.R., Freeman, G.J., Vignali, D.A., Wherry, E.J.: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capece, D., Verzella, D., Fischietti, M., Zazzeroni, F., Alesse, E.: Targeting costimulatory molecules to improve antitumor immunity. J. Biomed. Biotechnol. 2012, 926321 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauvin, J.M., Pagliano, O., Fourcade, J., Sun, Z., Wang, H., Sander, C., Kirkwood, J.M., Chen, T.H., Maurer, M., Korman, A.J., Zarour, H.M.: TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J. Clin. Invest. 125, 2046–2058 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Chen, L., Qiao, S.W., Nagaishi, T., Blumberg, R.S.: Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits proximal TCR signaling by targeting ZAP-70. J. Immunol. 180, 6085–6093 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Chen, L., Blumberg, R.S.: Editorial: CEACAM1: fine-tuned for fine-tuning. J. Leukoc. Biol. 86, 195–197 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Chen, L., Baker, K., Olszak, T., Zeissig, S., Huang, Y.H., Kuo, T.T., Mandelboim, O., Beauchemin, N., Lanier, L.L., Blumberg, R.S.: CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand expression on tumor cells. J. Exp. Med. 208, 2633–2640 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyle, A.J., Lehar, S., Lloyd, C., Tian, J., Delaney, T., Manning, S., Nguyen, T., Burwell, T., Schneider, H., Gonzalo, J.A., Gosselin, M., Owen, L.R., Rudd, C.E., Gutierrez-Ramos, J.C.: The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000)

    Article  CAS  PubMed  Google Scholar 

  • DE Andrade, L.F., Smyth, M.J., Martinet, L.: DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 92, 237–244 (2014)

    Article  PubMed  Google Scholar 

  • Dekruyff, R.H., Bu, X., Ballesteros, A., Santiago, C., Chim, Y.L., Lee, H.H., Karisola, P., Pichavant, M., Kaplan, G.G., Umetsu, D.T., Freeman, G.J., Casasnovas, J.M.: T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J. Immunol. 184, 1918–1930 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, X., Quezada, S.A., Sepulveda, M.A., Sharma, P., Allison, J.P.: Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J. Exp. Med. 211, 715–725 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman, G.J., Casasnovas, J.M., Umetsu, D.T., Dekruyff, R.H.: TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 235, 172–189 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo, J.A., Delaney, T., Corcoran, J., Goodearl, A., Gutierrez-Ramos, J.C., Coyle, A.J.: Cutting edge: the related molecules CD28 and inducible costimulator deliver both unique and complementary signals required for optimal T cell activation. J. Immunol. 166, 1–5 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Grosso, J.F., Kelleher, C.C., Harris, T.J., Maris, C.H., Hipkiss, E.L., DE Marzo, A., Anders, R., Netto, G., Getnet, D., Bruno, T.C., Goldberg, M.V., Pardoll, D.M., Drake, C.G.: LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest. 117, 3383–3392 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Cheng, D., Xia, Z., Luan, M., Wu, L., Wang, G., Zhang, S.: Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J. Transl. Med. 11, 215 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosomi, S., Chen, Z., Baker, K., Chen, L., Huang, Y.H., Olszak, T., Zeissig, S., Wang, J.H., Mandelboim, O., Beauchemin, N., Lanier, L.L., Blumberg, R.S.: CEACAM1 on activated NK cells inhibits NKG2D-mediated cytolytic function and signaling. Eur. J. Immunol. 43, 2473–2483 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C.T., Workman, C.J., Flies, D., Pan, X., Marson, A.L., Zhou, G., Hipkiss, E.L., Ravi, S., Kowalski, J., Levitsky, H.I., Powell, J.D., Pardoll, D.M., Drake, C.G., Vignali, D.A.: Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.H., Zhu, C., Kondo, Y., Anderson, A.C., Gandhi, A., Russell, A., Dougan, S.K., Petersen, B.S., Melum, E., Pertel, T., Clayton, K.L., Raab, M., Chen, Q., Beauchemin, N., Yazaki, P.J., Pyzik, M., Ostrowski, M.A., Glickman, J.N., Rudd, C.E., Ploegh, H.L., Franke, A., Petsko, G.A., Kuchroo, V.K., Blumberg, R.S.: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkins, M.K., Ashwell, J.D., Schwartz, R.H.: Allogeneic non-T spleen cells restore the responsiveness of normal T cell clones stimulated with antigen and chemically modified antigen-presenting cells. J. Immunol. 140, 3324–3330 (1988)

    CAS  PubMed  Google Scholar 

  • Jin, H.T., Anderson, A.C., Tan, W.G., West, E.E., Ha, S.J., Araki, K., Freeman, G.J., Kuchroo, V.K., Ahmed, R.: Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. U. S. A. 107, 14733–14738 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, R.J., Comps-Agrar, L., Hackney, J., Yu, X., Huseni, M., Yang, Y., Park, S., Javinal, V., Chiu, H., Irving, B., Eaton, D.L., Grogan, J.L.: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923–937 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Joller, N., Lozano, E., Burkett, P.R., Patel, B., Xiao, S., Zhu, C., Xia, J., Tan, T.G., Sefik, E., Yajnik, V., Sharpe, A.H., Quintana, F.J., Mathis, D., Benoist, C., Hafler, D.A., Kuchroo, V.K.: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komohara, Y., Morita, T., Annan, D.A., Horlad, H., Ohnishi, K., Yamada, S., Nakayama, T., Kitada, S., Suzu, S., Kinoshita, I., Dosaka-Akita, H., Akashi, K., Takeya, M., Jinushi, M.: The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas. Cancer Immuno. Res. 3, 999–1007 (2015)

    Article  CAS  Google Scholar 

  • Le Mercier, I., Chen, W., Lines, J.L., Day, M., Li, J., Sergent, P., Noelle, R.J., Wang, L.: VISTA regulates the development of protective antitumor immunity. Cancer Res. 74, 1933–44 (2014)

    Article  PubMed  Google Scholar 

  • Levin, S.D., Taft, D.W., Brandt, C.S., Bucher, C., Howard, E.D., Chadwick, E.M., Johnston, J., Hammond, A., Bontadelli, K., Ardourel, D., Hebb, L., Wolf, A., Bukowski, T.R., Rixon, M.W., Kuijper, J.L., Ostrander, C.D., West, J.W., Bilsborough, J., Fox, B., Gao, Z., Xu, W., Ramsdell, F., Blazar, B.R., Lewis, K.E.: Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol. 41, 902–915 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liakou, C.I., Kamat, A., Tang, D.N., Chen, H., Sun, J., Troncoso, P., Logothetis, C., Sharma, P.: CTLA-4 blockade increases IFNgamma-producing CD4 + ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl. Acad. Sci. U. S. A. 105, 14987–14992 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano, E., Dominguez-Villar, M., Kuchroo, V., Hafler, D.A.: The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 188, 3869–3875 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madireddi, S., Eun, S.Y., Lee, S.W., Nemcovicova, I., Mehta, A.K., Zajonc, D.M., Nishi, N., Niki, T., Hirashima, M., Croft, M.: Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J. Exp. Med. 211, 1433–1448 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney, K.M., Rennert, P.D., Freeman, G.J.: Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T., Eppolito, C., Qian, F., Lele, S., Shrikant, P., Old, L.J., Odunsi, K.: Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. U. S. A. 107, 7875–7880 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcintire, J.J., Umetsu, S.E., Akbari, O., Potter, M., Kuchroo, V.K., Barsh, G.S., Freeman, G.J., Umetsu, D.T., Dekruyff, R.H.: Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2, 1109–1116 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Moller-Tank, S., Maury, W.: Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470, 565–580 (2014)

    Article  PubMed  Google Scholar 

  • Moller-Tank, S., Kondratowicz, A.S., Davey, R.A., Rennert, P.D., Maury, W.: Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 87, 8327–8341 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller-Tank, S., Albritton, L.M., Rennert, P.D., Maury, W.: Characterizing functional domains for TIM-mediated enveloped virus entry. J. Virol. 88, 6702–6713 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Moricoli, D., Laguardia, M.E., Carbonella, D.C., Balducci, M.C., Dominici, S., Fiori, V., Serafini, G., Flego, M., Cianfriglia, M., Magnani, M.: Isolation of a new human scFv antibody recognizing a cell surface binding site to CEACAM1. Large yield production, purification and characterization in E. coli expression system. Protein Expr. Purif. 93, 38–45 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Nagaishi, T., Pao, L., Lin, S.H., Iijima, H., Kaser, A., Qiao, S.W., Chen, Z., Glickman, J., Najjar, S.M., Nakajima, A., Neel, B.G., Blumberg, R.S.: SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms. Immunity 25, 769–781 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Ng Tang, D., Shen, Y., Sun, J., Wen, S., Wolchok, J.D., Yuan, J., Allison, J.P., Sharma, P.: Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immuno. Res. 1, 229–234 (2013)

    Article  Google Scholar 

  • Ortenberg, R., Sapir, Y., Raz, L., Hershkovitz, L., Ben Arav, A., Sapoznik, S., Barshack, I., Avivi, C., Berkun, Y., Besser, M.J., Ben-Moshe, T., Schachter, J., Markel, G.: Novel immunotherapy for malignant melanoma with a monoclonal antibody that blocks CEACAM1 homophilic interactions. Mol. Cancer Ther. 11, 1300–1310 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Pauken, K.E., Wherry, E.J.: TIGIT and CD226: tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 26, 785–787 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Pavoni, E., Flego, M., Dupuis, M.L., Barca, S., Petronzelli, F., Anastasi, A.M., D’Alessio, V., Pelliccia, A., Vaccaro, P., Monteriu, G., Ascione, A., DE Santis, R., Felici, F., Cianfriglia, M., Minenkova, O.: Selection, affinity maturation, and characterization of a human scFv antibody against CEA protein. BMC Cancer 6, 41 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubinstein, R., Ramagopal, U.A., Nathenson, S.G., Almo, S.C., Fiser, A.: Functional classification of immune regulatory proteins. Structure 21, 766–776 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., Anderson, A.C.: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuishi, K., Jayaraman, P., Behar, S.M., Anderson, A.C., Kuchroo, V.K.: Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol. 32, 345–349 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzer, U., Maul-Pavicic, A., Cunningham-Rundles, C., Urschel, S., Belohradsky, B.H., Litzman, J., Holm, A., Franco, J.L., Plebani, A., Hammarstrom, L., Skrabl, A., Schwinger, W., Grimbacher, B.: ICOS deficiency in patients with common variable immunodeficiency. Clin. Immunol. 113, 234–240 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Sema Kurtulus, S., Kaori Sakuishi, K., Huiyuan Zhang, H., Nicole Joller, N., Dewar Tan, D., Mark Smyth, M., Vijay Kuchroo, V., Ana Anderson, A. (2014) Mechanisms of TIGIT-driven immune suppression in cancer. J. Immunother. Cancer 2 (Suppl 3), (abstract O13)

    Google Scholar 

  • Sharpe, A.H.: Mechanisms of costimulation. Immunol. Rev. 229, 5–11 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe, A.H., Freeman, G.J.: The B7-CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Sierro, S., Romero, P., Speiser, D.E.: The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin. Ther. Targets 15, 91–101 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Simpson, T.R., Quezada, S.A., Allison, J.P.: Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr. Opin. Immunol. 22, 326–332 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Stanietsky, N., Simic, H., Arapovic, J., Toporik, A., Levy, O., Novik, A., Levine, Z., Beiman, M., Dassa, L., Achdout, H., Stern-Ginossar, N., Tsukerman, P., Jonjic, S., Mandelboim, O.: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 106, 17858–17863 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stengel, K.F., Harden-Bowles, K., Yu, X., Rouge, L., Yin, J., Comps-Agrar, L., Wiesmann, C., Bazan, J.F., Eaton, D.L., Grogan, J.L.: Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc. Natl. Acad. Sci. U. S. A. 109, 5399–5404 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suntharalingam, G., Perry, M.R., Ward, S., Brett, S.J., Castello-Cortes, A., Brunner, M.D., Panoskaltsis, N.: Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Turnis, M.E., Korman, A.J., Drake, C.G., Vignali, D.A.: Combinatorial Immunotherapy: PD-1 may not be LAG-ing behind any more. Oncoimmunology 1, 1172–1174 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Rubinstein, R., Lines, J.L., Wasiuk, A., Ahonen, C., GUO, Y., Lu, L.F., Gondek, D., Wang, Y., Fava, R.A., Fiser, A., Almo, S., Noelle, R.J.: VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Le Mercier, I., Putra, J., Chen, W., Liu, J., Schenk, A.D., Nowak, E.C., Suriawinata, A.A., Li, J., Noelle, R.J.: Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl. Acad. Sci. U. S. A. 111, 14846–14851 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnatz, K., Bossaller, L., Salzer, U., Skrabl-Baumgartner, A., Schwinger, W., VAN DER Burg, M., VAN Dongen, J.J., Orlowska-Volk, M., Knoth, R., Durandy, A., Draeger, R., Schlesier, M., Peter, H.H., Grimbacher, B.: Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 107, 3045–3052 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Wilker, P.R., Sedy, J.R., Grigura, V., Murphy, T.L., Murphy, K.M.: Evidence for carbohydrate recognition and homotypic and heterotypic binding by the TIM family. Int. Immunol. 19, 763–773 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Williams, A.F., Barclay, A.N.: The immunoglobulin superfamily--domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405 (1988)

    Article  CAS  PubMed  Google Scholar 

  • Woo, S.R., Turnis, M.E., Goldberg, M.V., Bankoti, J., Selby, M., Nirschl, C.J., Bettini, M.L., Gravano, D.M., Vogel, P., Liu, C.L., Tangsombatvisit, S., Grosso, J.F., Netto, G., Smeltzer, M.P., Chaux, A., Utz, P.J., Workman, C.J., Pardoll, D.M., Korman, A.J., Drake, C.G., Vignali, D.A.: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman, C.J., Vignali, D.A.: Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J. Immunol. 174, 688–695 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Xi, L., Feber, A., Gupta, V., Wu, M., Bergemann, A.D., Landreneau, R.J., Litle, V.R., Pennathur, A., Luketich, J.D., Godfrey, T.E.: Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res. 36, 6535–6547 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, B., Yuan, L., Gao, Q., Yuan, P., Zhao, P., Yuan, H., Fan, H., Li, T., Qin, P., Han, L., Fang, W., Suo, Z.: Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer. Oncotarget 6, 20592 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap, E.H., Rosche, T., Almo, S., Fiser, A.: Functional clustering of immunoglobulin superfamily proteins with protein-protein interaction information calibrated hidden Markov model sequence profiles. J. Mol. Biol. 426, 945–961 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong, P.F., Salzer, U., Grimbacher, B.: The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol. Rev. 229, 101–113 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Strom, T.B., Kuchroo, V.K.: The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Rennert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rennert, P.D. (2016). Novel Immunomodulatory Pathways in the Immunoglobulin Superfamily. In: Rennert, P. (eds) Novel Immunotherapeutic Approaches to the Treatment of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-29827-6_2

Download citation

Publish with us

Policies and ethics