Skip to main content
Log in

Eulerian particle flamelet modeling for combustion processes of bluff-body stabilized methanol-air turbulent nonpremixed flames

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of NOx formation including thermal NO path, prompt and nitrous NOx formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and NOx formation in the bluff-body stabilized flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ap,k :

Planck mean absorption coefficient for radiating speciesk

Cp :

Specific heat of mixture at constant pressure

Di :

Diffusion coefficient of speciesi

d:

Fuel nozzle diameter

h, hk :

Enthalpy of mixture and speciesk

P:

Probability density function

Yi :

Mass fraction of speciesi

Z:

Mixture fraction

ρ:

Density

σb :

Stefan-Boltzmann constant

Wk :

Chemical production rate of speciesk

χ:

Scalar dissipation rate

st:

Stoichiometry

\(\bar \phi \) :

Reynolds-averaged (density-unweighted)

\(\bar \phi \) :

Favre-averaged (density-weighted)

References

  • Barths, H., Hasse, C., Bikas, G. and Peters, N., 2000, “Simulation of Combustion in Direct Injection Diesel Engines Using an Eulerian particle Flamelet Model,”Proc. 28 th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1161–1168.

    Google Scholar 

  • Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M. and Smiljanovski, V., 1998, “Simulation of Pollutant Formation in a Gas-Turbine Combustor using Unsteady Flamelets,”Proc. 27 th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1841–1847.

    Google Scholar 

  • Chen, M., Herrmann, M. and Peters, N., 2000, “Flamelet Modeling of Lifted Turbulent Methane/Air and Propane/Air Jet Diffusion Flames,”Proc. 28 th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 167–174.

    Google Scholar 

  • Coelho, P. J. and Peters, N., 2001, “Numerical Simulation of a MILD Combustion Burner,”Combustion and Flame, Vol. 124, pp. 503–518.

    Article  Google Scholar 

  • Dally, B. B., Masri, A. R., Barlow, R. S., Fiechtner, G. J. and Fletcher, D. F., 1996, “Measurements of NO in Turbulent Non-premixed Flames Stabilized on a Bluff Body,”Proc. 26 th Symp.(Int.)Comb., Combustion Institute, Pittsburgh, pp. 2191–2197.

    Google Scholar 

  • Dally, B. B., Masri, A. R., Barlow, R. S. and Fiechtner, G. J., 1998, “Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames,”Combustion and Flame, Vol. 114, pp. 119–148.

    Article  Google Scholar 

  • Ferreira, J. C., 1996,Flamelet Modelling of Stabilization in Turbulent Non-premixed Combustion, PhD Thesis, ETHZ Zuerich Switzerland.

  • Grcar, J.F., 1992,The Twopnt Program for Boundary Value Problems, Sandia Report, SAND91-8320, Livermore.

  • Hewson, J. C., 1997,Pollutant Emissions from Nonpremixed Hydrocarbon Flames, PhD Thesis, University of California, San Diego.

    Google Scholar 

  • Kang, S. M. and Kim, Y. M., 2003, “Parallel Unstructured-Grid Finite-Volume Method for Turbulent Nonpremixed Flames Using the Flamelet Model,”Numerical Heat Transfer, Part B, Vol. 43, pp. 525–547.

    Article  Google Scholar 

  • Kim, H. J. and Kim, Y. M., 2002, “Numerical Modeling for Combustion and Soot Formation Processes in Turbulent Diffusion Flames,”KSME Int. J., Vol. 16, No. 1, pp. 116–124.

    Google Scholar 

  • Kim, H. J., Kim, Y. M. and Ahn, K. Y., 2004a, “Numerical Modeling of Turbulent Nonpremixed Lifted Flames,”KSME Int. J., Vol. 18, No. 1, pp. 167–172.

    MathSciNet  Google Scholar 

  • Kim, S. H., Huh, K. Y. and Tao, L., 2000, “Application of the Elliptic Conditional Moment Closure Model to a Two-Dimensional Nonpremixed Methanol Bluff-Body Flame,”Combustion and Flame, Vol. 120, pp. 75–90.

    Article  Google Scholar 

  • Kim, S. K., Kang, S. M. and Kim, Y. M., 2001, “Flamelet Modeling for Combustion Processes and NOx Formation in the Turbulent Nonpremexed CO/H2/N2 Jet Flames,”Combustion Science and Technology, Vol. 168, pp. 47–83.

    Article  Google Scholar 

  • Kim, S. K., Yu, Y., Ahn, J. and Kim, Y. M., 2004b, “Numerical Investigation of the Autoignition of Turbulent Gaseous Jets in a High-Pressure Environment Using the Multiple-RIF Model,”Fuel, Vol. 83, pp. 375–386.

    Article  Google Scholar 

  • Klimenko, A. Y. and Bilger, R. W., 1999, “Conditional Moment Closure for Turbulent Combustion,”Prog. Energy Combust. Sci., Vol. 25, pp. 595–687.

    Article  Google Scholar 

  • Kronenburg, A., Bilger, R. W. and Kent, J. H., 2000, “Computation of Conditional Average Scalar Dissipation in Turbulent Jet Diffusion Flames,”Flow, Turbulence and Combustion, Vol. 64, pp. 145–159.

    Article  MATH  Google Scholar 

  • Libby, P.A. and Williams, F. A., eds, 1994,Turbulent Reacting Flows, New York, Academic Press.

    MATH  Google Scholar 

  • Marracino, B. and Lentini, D., 1997, “Radiation Modelling in Non-Luminous Nonpremixed Turbulent Flames,”Combustion Science and Technology, Vol. 128, p. 23.

    Article  Google Scholar 

  • Peters, N., 1986, “Laminar Flamelet Concepts in Turbulent Combustion,”Proc. 21 st Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1231–1250.

    Google Scholar 

  • Peters, N., 2000,Turbulent Combustion, Cambridge University Press.

  • Pitsch, H. and Steiner, H., 2000, “Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D),”Physics of Fluids, Vol. 12, pp. 2541–2554.

    Article  Google Scholar 

  • Pitsch, H., 2000, “Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion Flames,”Combustion and Flame, Vol. 123, pp. 358–374.

    Article  Google Scholar 

  • Pitsch, H., Barths, H. and Peters, N., 1996, “Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,” SAE paper 962057.

  • Pitsch, H., Chen, M. and Peters, N., 1998, “Unsteady Flamelet Modeling of Turbulent Hydrogen-Air Diffusion Flames,”Proc. 27 th Symp. (Int.) Comb., Combustion Institute, Pittsburgh, pp. 1057–1064.

    Google Scholar 

  • Pitsch, H., Riesmeier, E. and Peters, N., 2000, “Unsteady Flamelet Modeling of Soot Formation in Turbulent Jet Diffusion Flames,”Combustion Science and Technology, Vol. 158, pp. 389–406.

    Article  Google Scholar 

  • Pope, S. B., 2000,Turbulent Flows, Cambridge University Press.

  • Radhakrishnan, K. and Hindmarsh, A. C., 1993, “Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations,”Lawrence Livermore National Laboratory Report, UCRL-ID-113855.

  • Roquemore, W. M., Tankin, R. S., Chiu, H. H. and Lottes, S. A., 1984, “The Role of Vortex Shedding in a Bluff-Body Combustor,”Experimental Measurement and Techniques in Turbulent Reactive and Nonreactive Flows, Vol. 66, pp. 159–174.

    Google Scholar 

  • Turpin, G. and Troyes, J., 2000, “Validation of a Two-Equation Turbulence Model for Axisymmetric Reacting and Nonreacting Flows,” AIAA paper 2000-3463.

  • Vervisch, L. and Veynante, D., 2002, “Turbulent Combustion Modeling,”Prog. Energy Combust. Sci., Vol. 28, pp. 193–266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SK., Kang, S. & Kim, Y. Eulerian particle flamelet modeling for combustion processes of bluff-body stabilized methanol-air turbulent nonpremixed flames. J Mech Sci Technol 20, 1459–1474 (2006). https://doi.org/10.1007/BF02915969

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915969

Key Words

Navigation