Skip to main content
Log in

Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. i.e. ratio between the thermal diffusion and the mass diffusion of species m

Abbreviations

C s :

Smagorinsky coefficient

C Ω :

Micro-mixing constant

d h :

Hydraulic diameter

D a :

Damköhler number

\(\text {dW}_{j}^{n}\) :

n th Wiener process in j direction

\(\mathcal {E}\) :

Efficiency function

\(\mathcal {F}\) :

Thickening factor

\(\mathcal {G}\) :

Spatial filtering operator

h :

Specific enthalpy of the mixture

K a :

Karlovitz number

L e :

Lewis number

m :

Mass

N :

Number of stochastic fields

N α :

Number of table controlling variables

P r :

Prandtl number

R e :

Reynolds number

R e Δ :

Sub-grid turbulent Reynolds number corresponding to the filter size Δ

S :

Swirl number

S i j :

Rate of strain

S c :

Schmidt number

s l :

Laminar flame speed

T :

Temperature

t :

Time

\(\mathcal {T}\) :

Effective straining function

u j :

Velocity in j direction

\(u_{\Delta }^{\prime }\) :

Velocity fluctuation at the test filter size Δ

x,y,z :

Spatial coordinate

Y m :

Mass fraction of species m

\(\mathcal {Z}\) :

Mixture fraction

δ :

Flame thickness

δ i j :

Kronecker-symbol

Δ:

Grid size

Δt :

Time step size

Δe :

Colin test filter size

\(\zeta \left (0,1 \right )\) :

Dichotomic vector

μ :

Dynamic viscosity

ν :

Kinematic viscosity

\(\xi _{\alpha }^{n}\) :

n th stochastic field of the scalar α

Ξ:

Flame wrinkling factor

ρ :

Density

τ i j :

Components of the viscous stress tensor

τ sgs :

Sub-grid mixing time scale

φ :

Arbitrary quantity

ϕ :

General species/scalar

χ :

Scalar dissipation rate

Ω:

Flame sensor

\(\dot {\omega }\) :

Chemical source term

0 :

Property of an unmodified flame in the ATF context

F :

Property of a thickened flame in the ATF context

l :

Laminar

m :

Species

nr :

Normalized

\(\cdot _{\max }\) :

Maximum

sgs :

Sub-grid scale

t :

Turbulent

α :

Table controlling variable

ᅟ:

References

  1. Avdić, A., Kuenne, G., di Mare, F., Janicka, J.: LES combustion modeling using the Eulerian stochastic field method coupled with tabulated chemistry. Combust Flame In Press Corrected Proof doi:10.1016/j.combustflame.2016.06.015(2016)

  2. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Thierry Poinsot, Bordeaux (2012)

    Google Scholar 

  3. Smagorinsky, J.: General circulation experiments with the primitive equations, 1. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  4. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A-Fluid 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  5. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A-Fluid 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  6. Boger, M., Veynante, D., Boughanem, H., Trouve, A., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symposium (International) on Combustion 27, 917–925 (1998)

    Article  Google Scholar 

  7. Smooke, M.D.: Reduced kinetic mechanisms and asymptotic approximations for Methane-Air flames. Lecture notes in physics, 384 (1991)

  8. Peters, N., Rogg, B.: Reduced Kinetic Mechanisms for Application in Combustion Systems (1993)

  9. Van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci. Technol. 161(1), 113–137 (2000)

    Article  Google Scholar 

  10. Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust 91(4), 867–893 (2013)

    Article  Google Scholar 

  11. CHEM1D (www.combustion.tue.nl/chem1d) A one-dimensional laminar flame code, developed at Eindhoven University of Technology

  12. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Jr, W.C.G., Lissianski, V.V., Qin, Z. (www.me.berkeley.edu/gri_mech/) GRI-Mech 3.0

  13. Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust Theor Model 7(3), 449–470 (2003)

    Article  Google Scholar 

  14. Vreman, A.W., Albrecht, B., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  15. Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust Flame 158(9), 1750–1767 (2011)

    Article  Google Scholar 

  16. Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed Generated Manifolds for the Computation of Technical Combustion Systems. In: Proceedings of ASME Turbo Expo 2009, p 11 (2009)

  17. De Goey, L.P.H., ten Thije Boonkkamp, J.H.M.: A flamelet description of premixed laminar flames and the relation with flame stretch. Combust Flame 119(99), 253—271 (1999)

    Google Scholar 

  18. Van Oijen, J.A., Groot, G.R.A., Bastiaans, R.J.M., De Goey, L.P.H.: A flamelet analysis of the burning velocity of premixed turbulent expanding flames. P. Combust Inst. 30, 657–664 (2005)

    Article  MATH  Google Scholar 

  19. Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation. Combust Flame 159(8), 2669–2689 (2012)

    Article  Google Scholar 

  20. Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A-Fluid 5(6), 1282–1284 (1993)

    Article  MATH  Google Scholar 

  21. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energ. Combust 11(2), 119–192 (1985)

    Article  Google Scholar 

  22. Jones, W.P., Navarro-Martinez, S.: Numerical Study of n-Heptane Auto-ignition Using LES-PDF Methods. Flow Turbul. Combust 83(3), 407–423 (2009)

    Article  MATH  Google Scholar 

  23. Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust 60(2), 157–172 (1998)

    Article  MATH  Google Scholar 

  24. Dopazo, C.: Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution. Phys. Fluids 18(4), 397–404 (1975)

    Article  MATH  Google Scholar 

  25. Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust Flame 145(1-2), 88–104 (2006)

    Article  Google Scholar 

  26. Jones, W.P., Navarro-Martinez, S., Röhl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. P. Combust Inst. 31(2), 1765–1771 (2007)

    Article  Google Scholar 

  27. Jones, W.P., Marquis, A.J., Prasad, V.: LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust Flame 159(10), 3079–3095 (2012)

    Article  Google Scholar 

  28. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  29. Valiño, L., Mustata, R., Letaief, K.B.: Consistent Behavior of Eulerian Monte Carlo fields at Low Reynolds Numbers. Flow Turbul. Combust 96(2), 503–512 (2016)

    Article  Google Scholar 

  30. Bulat, G., Jones, W.P., Marquis, A.J.: NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combust Flame 161, 1804–1825 (2014)

    Article  Google Scholar 

  31. Jones, W.P., Marquis, A.J., Wang, F.: Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method. Fuel 140, 514–525 (2015)

    Article  Google Scholar 

  32. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  33. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust Flame 131(1–2), 159–180 (2002)

    Article  Google Scholar 

  34. Durand, L., Polifke W.: Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver. In: ASME Turbo Expo. Conference Proceedings, pp 869–878 (2007)

  35. Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust 74(1), 103–127 (2005)

    Article  MATH  Google Scholar 

  36. Gregor, M., Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Multi-scalar measurements in a premixed swirl burner using D Raman/Rayleigh scattering. P. Combust Inst. 32(2), 1739–1746 (2009)

    Article  Google Scholar 

  37. Lehnhaeuser, T., Schaefer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Meth. Fl 38(7), 625–645 (2002)

    Article  MathSciNet  Google Scholar 

  38. Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airfoil flow simulations using a pressure based method with high order schemes . In: 14th International Conference on Numerical Methods in Fluid Dynamics, pp 372–378. Springer, Berlin (1995)

  39. der Houwen, P.J.V.: Explicit Runge-Kutta formulas with increased stability boundaries. Numer. Math. 20(2), 149–164 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  40. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  41. Biagioli, F.: Stabilization mechanism of turbulent premixed flames in strongly swirled flows. Combust Theor Model 10(3), 389–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the German Research Council (DFG) through the project SFB/TRR 129 and the support of the HPC Hessen (Hessisches Kompetenzzentrum fuer Hochleistungsrechnen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Avdić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdić, A., Kuenne, G. & Janicka, J. Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach. Flow Turbulence Combust 97, 1185–1210 (2016). https://doi.org/10.1007/s10494-016-9781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9781-y

Keywords

Navigation