Skip to main content
Log in

The mechanical behavior of in-situ NiAl-refractory metal composites

  • In-Situ Composites
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article summarizes the mechanical bahavior of the in-situ NiAl-refractory metal composites at room and elevated temperatures, with particular emphasis placed on the NiAl−Cr(Mo) composite with lamellar structure. Comparisons with other NiAl-refractory metal composites are also made wherever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Miracle, “The Physical and Mechanical Properties of NiAl,”Acta Met. et Mat., 41 (3) (1993), p. 649.

    Article  CAS  Google Scholar 

  2. R. Darolia et al., “Overview of NiAl Alloys for High Temperature Structural Applications,”Ordered Intermetallic Compound—Physical Metallurgy and Mechanical Behavior, ed. C.T. Liu et al. (1992), p. 679.

  3. R. Darolia, “NiAl for High Temperature Structural Applications,”JOM, 43 (3) (1991), p. 44.

    CAS  Google Scholar 

  4. R.D. Noebe, R.R. Bowman, and M.V. Nathal, “Review of the Physical and Mechanical Properties of the B2 Compound NiAl,”Int. Mat. Rev., 38 (1993), p. 193.

    CAS  Google Scholar 

  5. D.B. Miracle and R. Daroha, “Structural Applications of NiAl,”Intermetallic Compounds: Principals and Practice, ed. J. Westbrook et al. (New York: John Wiley & Sons, 1993).

    Google Scholar 

  6. R. Darolia, “NiAl for Turbine Foil Applications,”Structural Intermetallics, ed. R. Darolia et al. (Warrendale, PA: TMS, 1993), p. 495.

    Google Scholar 

  7. R.R. Bowen, “Influence of Interfacial Characteristics on the Mechanical. Properties of Continuous Fiber-Reinforced NiAl Composites,”Intermetallic Matrix Composites II, 273, ed. D.B. Miracle et al. (Pittsburgh, PA: MRS, 1992), p. 145.

    Google Scholar 

  8. R.A. Amato and J.-M. Yang, “Status and Development of Nickel Aluminide (NiAl) Composites,”Intermetallic Matrix Composites III, ed. J.A. Graves et al. (Pittsburgh, PA: MRS, 1994), p. 212.

    Google Scholar 

  9. C. Liu et al. “Processing and High Temperature Deformation of Al2O3 Fiber-Reinforced NiAlFe Composites,”Mat. Sci. and Engrg., A191 (1995), p. 49.

    Article  Google Scholar 

  10. C. Ward and A. Culbertson, “Issues in Potential IMC Applications for Aerospace Structures,”Intermetallic Matrix Composites III, ed. J.A. Graves et al. (Pittsburgh, PA: MRS, 1994), p. 3.

    Google Scholar 

  11. S.L. Draper and I.E. Locci, “Al2O3 Fiber Strength Degradation in Metal and Intermetallic Matrix Composites,”J. of Mat. Research, 9 (6) (1994), p. 1397.

    Article  CAS  Google Scholar 

  12. H.E. Cline and J.L. Walter,Met. Trans., 1 (1970), p. 2091.

    Google Scholar 

  13. H.E. Chen et al.Met. Trans. 2 (1971), p. 789.

    Article  Google Scholar 

  14. J.L. Walter and H.E. Cline,Met. Trans., 1 (1970), p. 1221.

    CAS  Google Scholar 

  15. D.M. Shah and D. Anton, “In-Situ Synthesis of Intermetallic Matrix Composites,” in Ref. 7, p. 225.

    Google Scholar 

  16. K.M. Chang, “Fracture Mechanisms in. NiAlCr Eutectic Composites,” in Ref. 7, p. 191.

    Google Scholar 

  17. K.S. Kumar and G. Bao, “Intermetallic Matrix Composites: An Overview,”Comp. Sci. and Tech., 52 (1994), p. 127.

    Article  CAS  Google Scholar 

  18. D.R. Johnson et al., “NiAl-Based Polyphase In-Situ Composites in the NiAl-Ta-X Systems.Intermetallics, 3 (1995), p. 493.

    Article  CAS  Google Scholar 

  19. D.R. Johnson et al., “Processing and Mechanical Properties of In-Situ Compsoites from the NiAl−Cr and the NiAl−(Cr,Mo) Eutectic Systems,”Intermetallics, 3 (1995), p. 99.

    Article  CAS  Google Scholar 

  20. J.-M. Yang et al., “Microstructure and Mechanical Behavior of In-Situ Directional Solidified NIAl/Cr(Mo) Eutectic Composites,”Acta Materialia, 45 (1) (1997), p. 295.

    Article  CAS  Google Scholar 

  21. F.E. Herradia et al., “The Fracture Resistance of Directionally Solidifed Dual-Phase NiAl-Reinforced with Refractory Metals,”Acta Met. et Mat., 41 (2) (1993), p. 505.

    Article  Google Scholar 

  22. B.D. Flin, M. Ruhle, and A.G. Evans, Toughening in Composites of Al2O3 Reinforced With Al,”Acta Met. et Mat. 37 (1989), p. 3001.

    Article  Google Scholar 

  23. K.S. Chan, “Micromechanics of Shear Ligament Toughening,”Met. Trans., 22A, 1991, p. 2021.

    CAS  Google Scholar 

  24. K.S. Chan, “Understanding Fracture Toughness in Gamma TiAl,”JOM, 44 (5) (1992), p. 30.

    CAS  Google Scholar 

  25. K. Cheng, M.Sc. thesis, University of Califormia, (1996).

  26. J.-M. Yang, R.A. Amato, and K. Bain, unpublished results.

  27. T.M. Pollocks and D. Kolluru, “Deformation of NiAl-based Intermetallics,Micromechanics of Advanced Materials, ed. S.N.G. Chu et al. (Warrendale, PA: TMS, 1995), p. 205.

    Google Scholar 

Download references

Authors

Additional information

J.-M. Yang earned his Ph.D. at the University of Delaware in 1986. He is currently a professor in the Department of Materials Science and Engineering at the University of California at Los Angeles. Dr. Yang is a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.M. The mechanical behavior of in-situ NiAl-refractory metal composites. JOM 49, 40–43 (1997). https://doi.org/10.1007/BF02914401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914401

Keywords

Navigation