Skip to main content
Log in

The modeling of retained austenite in low-alloyed TRIP steels

  • Retained Austenite in Steel
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Low-alloyed transformation-induced plasticity steel (25 CrMo 4 and 15 CrNi 6) is produced by special heat treatments resulting in microstructures with variations in the content of retained austenite as well as the spatial arrangement of the austenitic grains. In this article, the influence of these variations on mechanical behavior is investigated. A continuum micromechanical unit-cell model is used to study the influence of external load on the strain-induced austenite-to-martensite phase transformation for selected microstructures. The model is implemented in an incremental formulation to a finite-element code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mitter,Materialkundlich-Technische Reihe, 7 (Berlin: Gebr. Borntrager, 1987).

    Google Scholar 

  2. F.D. Fischer et al.,Archive of Applied Mechanics, 64 (1994) pp. 54–85.

    Google Scholar 

  3. V.F. Zackay et al.,Trans of the American Society for Metals. 60 (1967), pp. 252–259.

    CAS  Google Scholar 

  4. C. Matsumura, Y. Sakuma, and H. Takechi,Trans. of ISII. 27 (1987), pp. 570–579.

    CAS  Google Scholar 

  5. O. Matsumura, Y. Sakuma, and H. Takechi,Scripta Metallurgica., 21 (1987), pp. 1301–1306.

    Article  CAS  Google Scholar 

  6. G. Keisner et al.Sonderbande der Praktischen Metallographte 26, ed. G. Petzow. Muchen, Germany: Harser Verlag, 1998, pp. 309–317.

    Google Scholar 

  7. G. Reisner, E. Werner, and F.D. Fischer,Computational Methods in Micromechanics, ed. S. Goshand and M. Ostoja-Starzewski (New York: ASME International, 1996), pp. 165–173.

    Google Scholar 

  8. V.T.T. Miihkinen and D.V. Edmonds,Materials Science and Technology, 3 (1987), pp. 422–431.

    CAS  Google Scholar 

  9. J.R. Blanchard, R.M. Parke, and A.J. Herzig,Transactions of the American Society for Metals, 31 (1943), pp. 849–876.

    Google Scholar 

  10. E. Houdremont,Handbuch der Sonderstahikunde (Berlin: Springer Verlag, 1956), pp. 135–136.

    Google Scholar 

  11. J.R. Patel and M. Cohen,Acta Metallurgica, 1 (1953), pp. 531–538.

    Article  CAS  Google Scholar 

  12. F.D. Fischer,Mechanics of Solids with Phase Changes, ed. F.D. Fischer and M. Berveiller (New York: Springer-Verlag, CISM Courses and Lectures, 1996).

    Google Scholar 

  13. L. Kaufman and M. Cohen,Journal of Metals, 10 (1958), pp. 165–173.

    Google Scholar 

  14. Z. Nishiyama,Martensitic Transformation, ed. M.E. Fine, M. Meshii, and C.M. Wayman (New York: Academic Press, 1978), p. 215.

    Google Scholar 

  15. K. Sugimoto, M. Kobayashi, and S. Hashimoto,Met. Trans. A, 23A (1992), pp. 3085–3091.

    Article  CAS  Google Scholar 

  16. B. Tiefenthaler, G. Reisner, and E. Werner,Zeitschrift fur Metalkunde, 86 (1995), pp. 845–851.

    CAS  Google Scholar 

  17. G. Reisner et al.,Materials Science and Engineering, 215 (1996), pp. 50–56.

    Article  Google Scholar 

  18. J.D. Verhoeven,Fundamentals of Physical Metallurgy, (New York: John Wiley and Sons, 1995), p. 479.

    Google Scholar 

  19. Hibbit, Karlsson, and Sorensen,ABAQUS Version 5.5, Theory Manual (Pawtucket, RI: Hibbit, Karlsson, and Sorensen, 1995).

    Google Scholar 

  20. P. Ludwik,Elemente der technischen Mechanik (Berlin: Julius Springer, 1909), p. 32.

    Google Scholar 

  21. I. Tamura and C.M. Wayman,Martensite, ed. G.B. Olson and W.S. Owen (New York: American Society for Metals International, 1992), p. 233.

    Google Scholar 

  22. M.S. Wechsler, D. Lieberman, and T.A. Read,Journal of Metals. Transactions of AIME, 197 (1953), pp. 1503–1515.

    Google Scholar 

  23. K.W. Andrews,J. of ISL, 7 (1965), pp. 721–727.

    Google Scholar 

  24. G.B. Olson and M. Cohen,Met. Trans. A., 13A (1987), pp. 422–431.

    Google Scholar 

Download references

Authors

Additional information

G. Reisner earned his Ph.D. in materials science from Montanuniversitaet Leoben (ML) in 1997. He is currently a lecturer at the institute of Mechanics at ML.

E.A. Werner earned his Ph.D. in materials science from ML in 1991. He is currently a professor at the Institute of Metal Physics at ML.

P. Kerschbaummayr earned his Dipl.-Ing. in materials science from ML in 1996. He is currently a R&D engineer at VA Stahl Linz.

I. Papst earned her Ph.D. in solid-state physics from ML in 1997. She is currently a scientist at the Institute of Metal Physics at ML.

F.D. Fischer earned his Ph.D. in mechanics from the Technical University of Vienna in 1965. He is currently a professor and head of the institute of Mechanics at ML.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisner, G., Werner, E.A., Kerschbaummayr, P. et al. The modeling of retained austenite in low-alloyed TRIP steels. JOM 49, 62–65 (1997). https://doi.org/10.1007/BF02914354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914354

Keywords

Navigation