Skip to main content
Log in

Deformation and fracture in Al−CuAl2 eutectic composites

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Ambient temperature compressive stress-strain behavior to failure, and associated structural detail, have been characterized in Al−CuAl2 composites of small interlamellar spacing (≤2μ). Differences in the compressive and tensile yield stress levels of the composite are attributed to thermally induced residual stress. Analysis gives a residual tensile stress ∼3500 psi and anin-situ yield stress ∼13,500 psi in the aluminum-rich phase. Evidence for a dislocation-interface interaction is provided by the form of deformation substructure in the aluminum-rich phase. Failure in these multi-grained eutectic composites is shown to be controlled primarily by shear-mode buckling of the lamellar structure. Buckling leads to cleavage of the CuAl2 phase, shear in the aluminum-rich phase, accompanied by void formation, coalescence and crack formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Salkind:Surfaces and Interfaces, 1968, vol. 11, Syracuse University, p. 417.

    Google Scholar 

  2. G. A. Chadwick:Progr. Mater. Sci. 1963, vol. 12, p. 97.

    Article  Google Scholar 

  3. A. S. Yue:Techniques of Metal Research, 1968, R. F. Bunshah, ed., vol. 1, p. 1155, John Wiley & Sons, New York.

    Google Scholar 

  4. R. W. Kraft and D. L. Albright:Trans. TMS-AIME, 1961, vol. 221, p. 95.

    CAS  Google Scholar 

  5. A. S. Yue, F. W. Crossman, A. E. Vidoz, and M. I. Jacobsen:Trans. TMS-AIME, 1968, vol. 242, p. 2441.

    CAS  Google Scholar 

  6. R. W. Kraft and D. L. Albright:Trans. TMS-AIME, 1962, vol. 224, p. 1176.

    CAS  Google Scholar 

  7. N. Tahahashi:J. Appl. Phys. 1960, vol. 31, p. 1287.

    Article  Google Scholar 

  8. G. C. Weatherly:Metal. Sci. J., 1968, vol. 2, p. 25.

    Google Scholar 

  9. I. G. Davies and A. Hellawell:Phil. Mag. 1969, vol. 19, p. 1285.

    Article  CAS  Google Scholar 

  10. F. W. Crossman, A. S. Yue and A. E. Vidoz:Trans. TMS-AIME 1969, vol. 245, p. 397.

    CAS  Google Scholar 

  11. B. R. Butcher, G. C. Weatherly and H. R. Pettit:Metal Sci. J. 1969, vol. 3, p. 7.

    Google Scholar 

  12. S. Dirnfeld, F. Gross, and S. Niedzwiedz:Quantitative Relation Between Properties and Microstructure, Proc. Int. Conf. Haifa, Israel, D. G. Brandon and A. Rosen, eds, p. 235, 1969.

  13. R. W. Herzberg, F. D. Lemkey and J. A. Ford:Trans. TMS-AIME 1965, vol. 233, p. 342.

    Google Scholar 

  14. A. R. Zecca, D. R. Hay, and H. P. Krajewski:Metal-Matrix Composites, 1969, DMIC Memo, No. 243, p. 65.

  15. D. D. Double and A. Hellawell:Phil. Mag., 1969, vol. 19, p. 1299.

    Article  CAS  Google Scholar 

  16. B. W. Rosen:Fiber Composite Materials p. 37, ASM 1965.

  17. J. R. Lager and R. R. June:J. Composite Mater., 1969, vol. 3, p. 48.

    Article  Google Scholar 

  18. B. J. Shaw:Acta Met. 1967, vol. 15, p. 1169.

    Article  CAS  Google Scholar 

  19. U. Lindborg:Trans. ASM 1968, vol. 61, p. 500.

    CAS  Google Scholar 

  20. M. R. Pinnel, H. P. Cheskis, R. W. Heckel and A. Lawiey:Trans. TMS-AIME, 1969, vol. 245, p. 2110.

    CAS  Google Scholar 

  21. L. Guillet and R. LeRoux: inIntermetallic Compounds, J. H. Westbrook, ed., p. 456, John Wiley & Sons, New York, 1967.

    Google Scholar 

  22. E. R. Thompson: United Aircraft Research Laboratories, East Hartford, Conn., private communication.

  23. E. V. Sumner: Advanced Fibrous Reinforced Composites, SAMPE, 1966, vol. 10, p. F-11.

    Google Scholar 

  24. H. P. Cheskis and R. W. Heckel:Met. Trans. 1970, vol. 1, p. 1931.

    Article  CAS  Google Scholar 

  25. E. R. Thompson, D. A. Koss and J. C. Chestnutt:Met. Trans. 1970, vol. 1, p. 2807.

    CAS  Google Scholar 

  26. S. S. Hecker, C. H. Hamilton, and L. J. Ebert:Trans. ASM 1969, vol. 62, p. 741.

    Google Scholar 

  27. G. Greetham and R. W. Honeycombe:J. Inst. Metals, 1960–61, vol. 89, p. 13.

    CAS  Google Scholar 

  28. H. E. Cline and D. F. Stein:Trans. TMS-AIME 1969, vol. 245, p. 841.

    CAS  Google Scholar 

  29. H. E. Cline and D. Lee:Acta Met. 1970, vol. 18, p. 315.

    Article  CAS  Google Scholar 

  30. P. R. Swann:Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., p. 131, Interscience, New York, 1963.

    Google Scholar 

  31. B. W. Rosen:Fiber Composite Materials, p. 37, ASM, 1965.

  32. N. F. Dow, B. W. Rosen, and Z. Hashin:NASA-CR-492, June, 1966.

  33. H. Schuerch:AIAA J., 1966, vol. 4, p. 102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattnaik, A., Lawley, A. Deformation and fracture in Al−CuAl2 eutectic composites. Metall Trans 2, 1529–1536 (1971). https://doi.org/10.1007/BF02913874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913874

Keywords

Navigation