Skip to main content
Log in

Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of cooling rate on the microstructure evolution and the mechanical properties of ingots and rods of 2–5 mm diameter of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites have been investigated. The microstructure of the composites is comprised of micrometer size γ-Ni dendrites embedded in a nano/-ultrafine lamellar fcc γ-Ni and Ni5Zr matrix. The evolution of the microstructure at a wide range of cooling rates (10–104 K/s) has been analyzed in respect of volume fraction of the phases, lamellar spacing, and secondary dendritic arm spacing. All these composites exhibit high hardness up to 4.6 GPa and yield strength up to 1.6 GPa with large compressive plasticity up to 22% at room temperature. The effect of cooling rates on the strength and hardness, and the plasticity of the nanolamellar composites with wide range of alloy composition have been correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. R. Elliott: Eutectic solidification. Mater. Sci. Eng. 65, 85 (1984).

    Article  CAS  Google Scholar 

  2. J.M. Park, K.B. Kim, W.T. Kim, M.H. Lee, J. Eckert, and D.H. Kim: High strength ultrafine eutectic Fe–Nb–Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).

    Article  CAS  Google Scholar 

  3. J.M. Park, T.E. Kim, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, and J. Eckert: High strength Ni–Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031913 (2008).

    Article  Google Scholar 

  4. J. Das, R. Theissmann, W. Löser, and J. Eckert: Effect of Sn on microstructure and mechanical properties of Ti–Fe–(Sn) ultrafine eutectic composites. J. Mater. Res. 25, 943 (2010).

    Article  CAS  Google Scholar 

  5. L.C. Zhang, J. Das, H.B. Lu, C. Duhamel, M. Calin, and J. Eckert: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr. Mater. 57, 101 (2007).

    Article  CAS  Google Scholar 

  6. T. Maity, B. Roy, and J. Das: Mechanism of lamellae deformation and phase rearrangement in ultrafine β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).

    Article  CAS  Google Scholar 

  7. D. Barbier, M.X. Huang, and O. Bouaziz: A novel eutectic Fe–15 wt% Ti alloy with an ultrafine lamellar structure for high temperature applications. Intermetallics 35, 41 (2013).

    Article  CAS  Google Scholar 

  8. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  9. D.V. Louzguine, H. Kato, L.V. Louzguina, and A. Inoue: High-strength binary Ti–Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).

    Article  CAS  Google Scholar 

  10. J. Eckert, J. Das, S. Pauly, and C. Duhamel: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).

    Article  CAS  Google Scholar 

  11. B.A. Pint, J.R. DiStefano, and I.G. Wright: Oxidation resistance: One barrier to moving beyond Ni-base superalloys. Mater. Sci. Eng., A 415, 255 (2006).

    Article  Google Scholar 

  12. T. Maity and J. Das: High strength Ni–Zr–(Al) nanoeutectic composites with large plasticity. Intermetallics 63, 51 (2015).

    Article  CAS  Google Scholar 

  13. T. Maity, A. Singh, A. Dutta, and J. Das: Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng., A 666, 72 (2016).

    Article  CAS  Google Scholar 

  14. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, G.H. Park, J-Y. Park, N. Lee, Y. Seo, J.M. Park, and K.B. Kim: Improving the plasticity and strength of Fe–Nb–B ultrafine eutectic composite. Mater. Des. 76, 190 (2015).

    Article  CAS  Google Scholar 

  15. J.T. Kim, S.W. Lee, S.H. Hong, H.J. Park, J-Y. Park, N. Lee, Y. Seo, W-M. Wang, J.M. Park, and K.B. Kim: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).

    Article  CAS  Google Scholar 

  16. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, J.Y. Suh, J.K. Lee, J.M. Park, T. Maity, J. Eckert, and K.B. Kim: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co–Cr–Mo–(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).

    Article  CAS  Google Scholar 

  17. S.W. Lee, J.T. Kim, S.H. Hong, H.J. Park, J-Y. Park, N.S. Lee, Y. Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, and K.B. Kim: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite. Sci. Rep. 4, 6500 (2014).

    Article  CAS  Google Scholar 

  18. J. Das, A. Güth, H.J. Klauß, C. Mickel, W. Löser, J. Eckert, S.K. Roy, and L. Schultz: Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scr. Mater. 49, 1189 (2003).

    Article  CAS  Google Scholar 

  19. J. Das, S. Pauly, C. Duhamel, B.C. Wei, and J. Eckert: Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. J. Mater. Res. 22, 326 (2007).

    Article  CAS  Google Scholar 

  20. J. Das, S.K. Roy, W. Löser, J. Eckert, and L. Schultz: Novel in situ nanostructure-dendrite composites in Zr-base multicomponent alloy system. Mater. Manuf. Processes 19, 423 (2004).

    Article  CAS  Google Scholar 

  21. W. Löser, J. Das, A. Güth, H-J. Klauß, C. Mickel, U. Kühn, J. Eckert, S. Roy, and L. Schultz: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics 12, 1153 (2004).

    Article  Google Scholar 

  22. G.A. Chadwick: Yield poixt analyses in eutectic alloys. Acta Metall. 24, 1137 (1976).

    Article  CAS  Google Scholar 

  23. G. Ghosh: Thermodynamics and kinetics of stable and metastable phases in the Ni–Zr system. J. Mater. Res. 9, 598 (1994).

    Article  CAS  Google Scholar 

  24. S. Miura, H. Unno, T. Yamazaki, S. Takizawa, and T. Mohri: Reinvestigation of Ni-solid solution/liquid equilibria in Ni–Al binary and Ni–Al–Zr ternary systems. J. Phase Equilib. 22, 457 (2001).

    Article  CAS  Google Scholar 

  25. Y.R. Luo: Comprehensive Handbook of Chemical Bond Energies, 1st ed. (CRC Press, Taylor & Francis Group, Florida, 2007); pp. 903–906.

    Book  Google Scholar 

  26. D. Bouchard and J.S. Kirkaldy: Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28, 651 (1997).

    Article  Google Scholar 

  27. W.R. Osorio, P.R. Goulart, G.A. Santos, C.M. Neto, and A. Garcia: Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 wt% Si and Zn 27 wt% Al alloys. Metall. Mater. Trans. A 37, 2525 (2006).

    Article  Google Scholar 

  28. W. Kurz and D.J. Fisher: Fundamental of Solidification, 3rd ed. (Trans Tech Publications, Switzerland, 1989); pp. 108–111.

    Google Scholar 

  29. K.A. Jackson and J.D. Hunt: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966).

    CAS  Google Scholar 

  30. R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz: Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans. 43, 1670 (2002).

    Article  CAS  Google Scholar 

  31. R. Caram and S. Milenkovic: Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification. J. Cryst. Growth 198–199, 844 (1999).

    Article  Google Scholar 

  32. H. Kaya, U. Boyuk, E. Cadirli, and N. Marasli: Unidirectional solidification of aluminium–nickel eutectic alloy. Met. Mater. 48, 291 (2010).

    CAS  Google Scholar 

  33. D.R. Stull and G.C. Sinke: Thermodynamic properties of the elements. R.F. Gould (Ed.) In Advances in Chemistry (American Chemical Society, Washington, DC, 1956); pp. 37–225.

    Google Scholar 

  34. D.R. Gaskell: Introduction to the Thermodynamics of Materials, 4th ed. (Taylor & Francis Group, New York, 2003); pp. 705–706.

    Google Scholar 

  35. H.G. Lee: Materials Thermodynamics with Emphasis on Chemical Approach (World Scientific Publishing Co., Pte., Ltd., Singapore, Malaysia, 2012); p. 433.

    Book  Google Scholar 

  36. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformation in Metals and Alloys, 3rd ed. (CRC Press, Taylor & Francis Group, Florida, 2009); pp. 212–220.

    Google Scholar 

  37. S.H. Zhou, Y. Wang, L-Q. Chen, Z-K. Liu, and R.E. Napolitano: Solution-based thermodynamic modelling of the Ni–Al–Mo system using first-principles calculations. Calphad 46, 124 (2014).

    Article  CAS  Google Scholar 

  38. J. Bratberg, H. Mao, L. Kjellqvist, A. Engström, P. Mason, and Q. Chen: The development and validation of a new thermodynamic database for Ni-based alloys. Superalloys 2012, 803 (2012).

    Article  Google Scholar 

  39. W.D. Callister and D.G. Rethwisch, Jr.: Materials Science and Engineering: An Introduction, 2nd ed. (Wiley India Pvt., Ltd., New Delhi, India, 2014).

    Google Scholar 

  40. A.M. Glezer, E.V. Kozlov, N.A. Koneva, N.A. Popova, and I.A. Kurzina: Plastic Deformation of Nanostructured Materials (CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2017); p. 83.

    Google Scholar 

Download references

Acknowledgments

The authors thank M. Das, S. Maity, and R. Kundu at the CRF at IIT Kharagpur for technical assistance. The financial support provided by Naval Research Board (NRB/4003/PG/357), Government of India, and SRIC (SGIRG), IIT Kharagpur are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Jana, P.P. & Das, J. Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) ultrafine eutectic composites. Journal of Materials Research 34, 1704–1713 (2019). https://doi.org/10.1557/jmr.2019.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.49

Navigation