Skip to main content
Log in

Improvements for the anatomical characterization of insect neurons in whole mount: the use of cyanine-derived fluorophores and laser scanning confocal microscopy

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The optical sectioning capability of the laser scanning confocal microscope was utilized to image dye-filled neurons within whole-mounted insect ganglia. Specific pterothoracic interneurons, in the mothManduca sexta, were retrogradely filled with Neurobiotin and subsequently visualized with a monoclonal anti-biotin conjugated with one of the following fluorophores: fluorescein, and the newly developed cyanines, Cy3.18 (Cy3) and Cy5.18 (Cy5). Overall, the Cy5 fluorophore was best suited for imaging insect neurons within ganglia. This new methodology allowed us to identify and characterize morphologically a collection of descending multisegmental interneurons with large or small diameter somata. A variety of larger molecular weight (10000 daltons) tracers was also used to examine the possibility of nonselective filling of neurons with Neurobiotin, possibly through gap junctions. We also investigated the usefulness of Cy3 and Cy5 as fluorophores for transmitter immunostaining of neurons in whole mount. Neurons immunoreactive for serotonin and the neuropeptides, FMR Famide and SCPb, were imaged in the brain and the pterothoracic ganglion. The central projections of some of these immunoreactive neurons were imaged in their entirety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman JS, Tyrer NM (1980) Filling selected neurons with cobalt through cut axons. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques-insect nervous system. Springer, New York, pp 373–402

    Google Scholar 

  • Bacon JP, Murphey RK (1984) Receptive fields of cricket giant interneurons are related to their structure. J Physiol 352:601–623

    PubMed  CAS  Google Scholar 

  • Bell RA, Joachim FA (1978) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Am 69:365–373

    Google Scholar 

  • Bishop CA, O'Shea M (1983) Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). J Neurobiol 14:251–269

    Article  PubMed  CAS  Google Scholar 

  • Booker R, Truman JW (1987) Postembryonic neurogenesis in the CNS of the tobacco hornworm,Manduca sexta I. Neuroblast arrays and the fate of their progeny during metamorphosis. J Comp Neurol 255:548–559

    Article  PubMed  CAS  Google Scholar 

  • Breidbach O (1978) Constancy and variation of the serotonin-like immunoreactive neurons in the metamorphosing ventral nerve cord of the meal beetle,Tenebrio molitor L. (Coleoptera: Tenebrionidae). Int J Insect Morphol Embryol 16:17–26

    Article  Google Scholar 

  • Breidbach O (1991) Constancies in the neuronal architecture of the suboesophageal ganglion at metamorphosis in the beetleTenebrio molitor L. Cell Tissue Res 266:173–190

    Article  Google Scholar 

  • Brelje TC, Wessendorf MW, Sorenson RL (1993) Multi-color laser scanning confocal immunofluorescence microscopy: practical applications and limitations. Methods Cell Biol (in press)

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco

    Google Scholar 

  • Burrows M (1975) Co-ordinating interneurons of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurones. J Exp Biol 63: 735–753

    PubMed  CAS  Google Scholar 

  • Burrows M (1978) Sources of variation in the output of locust spiracular motoneurons receiving common synaptic driving. J Exp Biol 74:175–186

    PubMed  CAS  Google Scholar 

  • Carlsson K (1991) The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on imaging properties in confocal microscopy. J Microsc 163:167–178

    Google Scholar 

  • DeLorme AW, Klukas KA, Mesce KA, Fahrbach SE (1992) Normal morphology and electrical activity demonstrated in a motoneuron spared from developmental cell death in the moth,Manduca sexta. Society for Neuroscience Abstracts 18:45

    Google Scholar 

  • Ephrussi B, Beadle GW (1936) A technique of transplantation forDrosophila. Am Nat 70:218–225

    Article  Google Scholar 

  • Fahrbach SE, Truman JW (1987) Possible interactions of a steroid hormone and neural inputs in controlling the death of an indentified neuron in the mothManduca sexta. J Neurobiol 18:497–508

    Article  PubMed  CAS  Google Scholar 

  • Granger NA, Homberg U, Henderson P, Towle A, Lauder JM (1989) Serotonin-immunoreactive neurons in the brain ofManduca sexta during larval development and larval-pupal metamorphosis. Int J Dev Neurosci 7:55–72

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG (1985) Metamorphosis of the insect nervous system: influences of the periphery on the postembryonic development of the antennal sensory pathway in the brain ofManduca sexta. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York, pp 124–148

    Google Scholar 

  • Homberg U, Hildebrand JG (1989) Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx mothManduca sexta. Cell Tissue Res 258:1–24

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx mothManduca sexta and colocalization with SCPb-, BPP,- and GABA-like immunoreactivity. Cell Tissue Res 259:401–419

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G (1977) Identified neurons and behavior of arthropods. Plenum Press, New York

    Google Scholar 

  • Huang Y, Zhou D, DiFiglia M (1992) Neurobiotin, a useful neuroanatomical tracer for in vivo anterograde, retrograde, and transneuronal tract-tracing and for in vitro labeling of neurons. J Neurosci Methods 37:141–150

    Google Scholar 

  • Kent KS, Hoskins SG, Hildebrand JG (1987) A novel serotoninimmunoreactive neuron in the antennal lobe of the sphinx mothManduca sexta persists throughout postembryonic life. J Neurobiol 18:451–465

    Article  PubMed  CAS  Google Scholar 

  • Kingan TG, Teplow DB, Philips JM, Riehm JP, Rao KR, Hildebrand JG, Homberg U, Kammer AE, Jardine I, Griffin PR, Hunt DF (1990) A new peptide in the FMRFamide family isolated from the CNS of the hawkmoth,Manduca sexta. Peptides 11:849–856

    Article  PubMed  CAS  Google Scholar 

  • Levine RB, Truman JW (1982) Metamorphosis of the insect nervous system: changes in morphology and synaptic interactions of identified neurones. Nature 299:250–252

    Article  PubMed  CAS  Google Scholar 

  • Levine RB, Truman JW (1985) Dendritic reorganization of abdominal motoneurons during metamorphosis of the moth,Manduca sexta. J Neurosci 5:2424–2431

    PubMed  CAS  Google Scholar 

  • Lloyd PE (1986) The small cardioactive peptides: a class of modulatory neuropeptides inAplysia. Trends in Neurosci 9:428–431

    Article  CAS  Google Scholar 

  • Maley B, Elde R (1982) Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii. Neuroscience 7:2469–2490

    Article  PubMed  CAS  Google Scholar 

  • Masinovsky B, Kempf SC, Callaway JC, AOD Willows (1988) Monoclonal antibodies to the molluscan small cardioactive peptide SCPb: immunolabeling of neurons in diverse invertebrates. J Comp Neurol 273:500–512

    Article  PubMed  CAS  Google Scholar 

  • Mesce KA, Truman JW (1988) Metamorphosis of the ecdysis motor pattern in the hawkmoth,Manduca sexta. J Comp Physiol A 163:287–299

    Article  PubMed  CAS  Google Scholar 

  • Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate (in press)

  • Nässel DR (1987) Neuroactive substances in the insect CNS. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Press, New York, pp 171–212

    Google Scholar 

  • Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85

    Article  PubMed  Google Scholar 

  • Pearson KG, Robertson RM (1987) Structure predicts synaptic function of two classes of interneurons in the thoracic ganglia ofLocusta migratoria. Cell Tissue Res 250:105–114

    Article  Google Scholar 

  • Radwan WA, Lauder JM, Granger NA (1989) Development and distribution of serotonin in the central nervous system ofManduca sexta during embryogenesis. II. The ventral nerve cord. Int J Dev Neurosci 7:43–53

    Article  PubMed  CAS  Google Scholar 

  • Robertson RM (1987) Insect neurons: synaptic interactions, circuits and the control of behavior. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Press, New York, pp. 393–442

    Google Scholar 

  • Sandstrom DJ, Weeks JC (1991) Reidentification of larval interneurons in the pupal stage of the tobacco hornworm,Manduca sexta. J Comp Neurol 308:311–327

    Article  PubMed  CAS  Google Scholar 

  • Sasek CA, Seybold VS, Elde RP (1984) The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12(3):855–873

    Article  PubMed  CAS  Google Scholar 

  • Schneider LE, Taghert PH (1988) Isolation and characterization of aDrosophila gene that encodes multiple neuropeptides related to Phe−Met−Arg−Phe−NH2 (FMR Famide). Proc Natl Acad Sci USA 85:1993–1997

    Article  PubMed  CAS  Google Scholar 

  • Schormann T, Jovin TM (1992) Contrast enhancement and depth perception in three-dimensional representations of differential interference contrast and confocal scanning laser microscope images. J Microsc 166:155–168

    Google Scholar 

  • Schwartz LM, Truman JW (1983) Hormonal control of rates of metamorphic development in the tobacco hornworm,Manduca sexta. Dev Biol 99:103–114

    Article  PubMed  CAS  Google Scholar 

  • Schwarzmann G, Wiegandt H, Rose B, Zimmerman A, Ben-Haim D, Loewenstein WR (1981) Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. Science 213:551–553

    Article  PubMed  CAS  Google Scholar 

  • Sheppard CJR, Gu M (1991) Aberration compensation in confocal microscopy. Appl Optics 30:3563–3568

    Article  Google Scholar 

  • Sorenson RL, Sasek CA, Elde RP (1984) Phe−Met−Arg−Phe−Amide (FMRF-NH2) inhibits insulin and somatostatin secretion and anti-FMRF-NH2 sera detects pancreatic polypeptide cells in the rat islet. Peptides 5:777–782

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HW, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1983) Cobalt-coupled neurons of a giant fibre system in Diptera. J Neurocytol 12:971–991

    Article  PubMed  CAS  Google Scholar 

  • Taghert PH, Goodman CS (1984) Cell determination and differentiation of identified serotonin-immunoreactive neurons in the grasshopper embryo. J Neurosci 4:989–1000

    PubMed  CAS  Google Scholar 

  • Taghert PH, Truman JW (1982) Identification of the bursicon-containing neurons in abdominal ganglia of the tobacco hornworm,Manduca sexta. J Exp Biol 98:385–401

    CAS  Google Scholar 

  • Tyrer NM, Turner JD, Altman JS (1984) Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227:313–330

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190

    Article  PubMed  CAS  Google Scholar 

  • Visser TD, Groen FCA, Brakenhoff GJ (1991) Absorption and scattering correction in fluorescence microscopy. J Microsc 163:189–200

    Google Scholar 

  • Wall JB, Taghert PH (1991) Segment-specific modifications of a neuropeptide phenotype in embryonic neurons of the moth,Manduca sexta. J Comp Neurol 309:375–390

    Article  PubMed  CAS  Google Scholar 

  • Wessendorf MW, Elde RP (1985) Characterization of an immunofluorescence technique for the demonstration of coexisting neurotransmitters within nerve terminals. J Histochem Cytochem 33:984–994

    PubMed  CAS  Google Scholar 

  • Wessendorf MW, Elde R (1987) The coexistence of serotonin- and substance P-like immunoreactivity in the spinal cord of the rat as shown by immunofluorescent labeling. J Neurosci 7:2352–2363

    PubMed  CAS  Google Scholar 

  • Witten JL, Truman JW (1991a) The regulation of transmitter expression in postembryonic lineages in the mothManduca sexta. I. Transmitter identification and developmental acquisition of expression. J Neurosci 11:1980–1989

    PubMed  CAS  Google Scholar 

  • Witten JL, Truman JW (1991b) The regulation of transmitter expression in postembryonic lineages in the mothManduca sexta. II. Role of cell lineage and birth order. J Neurosci 11:1990–1997

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesce, K.A., Klukas, K.A. & Brelje, T.C. Improvements for the anatomical characterization of insect neurons in whole mount: the use of cyanine-derived fluorophores and laser scanning confocal microscopy. Cell Tissue Res 271, 381–397 (1993). https://doi.org/10.1007/BF02913721

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913721

Key words

Navigation