Skip to main content
Log in

A comparative study of reactive oxygen species (ROS) related parameters in rat tissues

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are believed to be responsible for pathogenesis of various diseases affecting tissues and systems. ROS generated by mitochondrial electron transport chain as well as extra-mitochondrially are eliminated by the respective defense mechanisms. We checked the activity of ROS generating system such as xanthine oxidase and also the parameter of ROS defense mechanism e.g. superoxide dismutase (SOD), catalase, glutathione peroxidase (GPox), reduced glutathione content (GSH) and glucose-6-phosphate dehydrogenase (G6PDH) in mitochondrial and post-mitochondrial fractions from various tissues (liver, kidney, brain and heart) of normal rats. Extent of lipid peroxidation (LPO) which is immediate consequence of ROS generation was also examined. Our results shows that significant tissue-specific differences exist in mitochondrial and cytosolic ROS generating systems and ROS defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajan, R. R. and Katyare, S. S. (1991). Is the first site of phosphorylation operative in the rat brain mitochondria in early neonatal life? A critical re-evaluation. Mech. Age. Develop. 61, 149–161.

    Article  CAS  Google Scholar 

  2. Katyare, S. S. (1994). Effect ofin vivo propranolol treatment on oxidative energy metabolism in rat liver and kidney mitochondria. Ind. J. Biochem. Biophys. 31, 403–406.

    CAS  Google Scholar 

  3. Satav, J. G. and Katyare, S. S. (1991). Effect of thyroidectomy and subsequent treatment with triiodothyronine on kidney mitochondrial oxidative phosphorylation in the rat. J. Biosci. 16, 81–89.

    Article  CAS  Google Scholar 

  4. Katyare, S. S., Bangur, C. S. and Howland, J. L. (1994). Is respiratory activity in the brain mitochondria responsive to thyroid hormone action?: a critical re-evaluation. Biochem. J. 302, 857–860.

    PubMed  CAS  Google Scholar 

  5. Katyare, S. S. and Billimoria, F. R. (1989). Effect of experimentally induced thyrotoxicosis on oxidative energy metabolism in rat heart mitochondria. J. Biosci. 14, 329–339.

    Article  CAS  Google Scholar 

  6. Subramanian, M. and Katyare, S. S. (1990) Oxidative phosphorylation in mouse liver mitochondria during weaning. Mech. Age. Devl. 121–129.

  7. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  8. Halliwell, B. and Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14.

    PubMed  CAS  Google Scholar 

  9. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  10. Mates, J. M. (2000). Effect of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol. 153, 83–104.

    Article  CAS  Google Scholar 

  11. Forsberg, L., de Fair, U. and Morgenstern, R. (2001). Oxidative stress, human genetic variation and disease. Arch. Biochem. Biophys. 389, 84–93.

    Article  PubMed  CAS  Google Scholar 

  12. Fridovich, I. (1975). Superoxide dismutase. Annu. Rev. Biochem. 44, 147–159.

    Article  PubMed  CAS  Google Scholar 

  13. Satav, J. G., Dave, K. R. and Katyare, S. S. (2000) Influence of insulin status on extra-mitochondrial oxygen metabolism in the rat. Horm. Metab. Res. 32, 57–61.

    PubMed  CAS  Google Scholar 

  14. Ambrosone, C. B. (2000). Oxidants and antioxidants in breast cancer. Antioxidants and Redox Signaling 2, 903–917.

    Article  PubMed  CAS  Google Scholar 

  15. Sikka, S. C. (2001). Reactive impact of oxidative stress on male reproductive function. Curr. Med. Chem. 8, 851–862.

    PubMed  CAS  Google Scholar 

  16. Vincent, A. M., Brownlee, M. and Russell, J. W. (2002). Oxidative stress and programmed cell death in diabetic neuropathy. Ann. N. Y. Acad. Sci. 959, 368–383.

    PubMed  CAS  Google Scholar 

  17. Liu, Y. and Gutterman, D. D. (2002). The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation. Vascul. Pharmacol. 38, 43–49.

    Article  PubMed  CAS  Google Scholar 

  18. Mattson, M. P. and Liu, D. (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Medictive. 2, 215–231.

    Article  CAS  Google Scholar 

  19. Benhar, M., Engelberg, D. and Levitzki, A. (2002) ROS, stress-activated kinases and stress signaling in cancer. Eur. Mol. Biol. Org. Reports 3, 420–425.

    CAS  Google Scholar 

  20. Droge, W. (2002) Free radials in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    PubMed  CAS  Google Scholar 

  21. Sakai, K., Matsumoto, K., Nishikawa, T., Suefuji, M., Nakamaru, K., Hirashima, Y., Kawashima, J., Shirotani, T., Ichinose, K., Brownlee, M. and Araki, E. (2003). Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem. Biophys. Res. Commun. 300, 216–222.

    Article  PubMed  CAS  Google Scholar 

  22. Kaushal, R., Dave, K. R. and Katyare, S. S. (1999) Paracetamol hepatotoxicity and microsomal function. Environ. Toxicol. Pharmacol. 1, 67–74.

    Article  Google Scholar 

  23. Uchiyama, M. and Mihara, M. (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271–278.

    Article  PubMed  CAS  Google Scholar 

  24. Siebeneick, H. U. and Baker, B. R. (1974). Guanine deaminase and xanthine oxidase. Methods Enzymol. Vol. 34. In: W. B. Jacoby, M. Wilcheck (eds.), New York: Academic Press, 523–528.

    Google Scholar 

  25. Marklund, S. and Marklund, G. (1974). Involment of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469.

    Article  PubMed  CAS  Google Scholar 

  26. Patel, S. P. and Katyare, S. S. (2006) Differential pH sensitivity of tissue superoxide dismutases. Ind. J. Clin. Biochem. Submitted.

  27. Abei, H. (1984). Catalasein vitro. Methods Enzymol. Vol. 105, In: L. Packer (ed.) New York: Academic Press, 121–126.

    Google Scholar 

  28. Hafeman, D. G., Sunde, R. A. and Hoekstra, W. G. (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr. 104, 580–587.

    PubMed  CAS  Google Scholar 

  29. Cohen, P. and Rosemeyer, M. A. (1975). Glucose-6-phosphate dehydrogenase from human erythrocyte. Methods Enzymol. 41, 208–216.

    Article  PubMed  CAS  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  31. Rajwade, M. S., Katyare, S. S., Fatterpaker, P. and Sreenivasan, A. (1975). Regulation of mitochondrial protein turnover by thyroid hormone(s). Biochem. J. 152, 379–387.

    PubMed  CAS  Google Scholar 

  32. Katyare, S. S. and Rajan, R. R. (1991) Altered energy coupling in rat heart mitochondria following in vivo treatment with propranol. Biochem. Pharmacol. 42, 617–623.

    Article  PubMed  CAS  Google Scholar 

  33. Wong, G. H. W. (1995). Protective roles of cytokines against radiation: Induction of mitochondrial MnSOD. Biochim. Biophys. Acta. 1271, 205–209.

    PubMed  Google Scholar 

  34. Al Khalidi, U. A. S. and Chaglassian, T. H. (1965) The species distribution of xanthine oxidase. Biochem. J. 97, 318–320.

    Google Scholar 

  35. Lehninger, A. L. (1983) Biochemistry. 2nd Ed. pp. 456–464.

  36. Enander, K. and Rydstrom, J. (1982) Energy-linked nicotinamide nucleotide transhydrogenase. Kinetics and regulation of purified and reconstituted transhydrogenase from beef heart mitochondria. J. Biol. Chem. 257, 14760–14766.

    PubMed  CAS  Google Scholar 

  37. Hoek, J. B. and Rydstrom, J. (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254, 1–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra S. Katyare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.P., Katyare, S.S. A comparative study of reactive oxygen species (ROS) related parameters in rat tissues. Indian J Clin Biochem 21, 48–53 (2006). https://doi.org/10.1007/BF02913066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913066

Keywords

Navigation