Skip to main content
Log in

Caprine cardiac sarcoplasmic reticulum isolation and biochemical characterisation with emphasis on Ca2+-adenosine triphosphatase

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

This study was aimed at isolating, in its pure form, and characterizing the sarcoplasmic reticulum from caprine (Capra hircus) heart. The sarcoplasmic reticulum from thirty caprine heart ventricular homogenates was isolated and purified. It was characterized on the basis of both, its protein and lipid composition. The protein content was 142±10 mg/g of tissue. Ca2+-ATPase activity equaled 3.75±1.06mmol Pi/mg protein/min while the uptake rate was 24±1.14 nmol/mg protein/min. 205kD, 110kD, 90kD, 84kD, 66kD, 55kD and 29kD molecular weight proteins were seen on an SDS polyacrylamide gel. Triglyceride, Cholesterol and Phospholipids (phosphatidylethanolamine, phosphatidylinositol, phosphatidylcholine, sphingomyelin and phosphatidylserine) were present in increasing order of their concentration. Long chain fatty acids predominated over the unsaturated ones. The ryanodine receptor displayed two binding sites for ryanodine. Characterisation encompassing the above biochemical aspects of normal caprine cardiac sarcoplasmic reticulum was thus achieved after isolating it in the pure form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams AJ, Ashley RH. Reconstitution of cardiac sarcoplasmic reticulum calcium channels. In: Wray DW, Norman RI, Hess P, editors. Calcium Channels-Structure and Function. Vol. 560. New York: The New York Academy of Sciences; 1989. p. 163–73.

    Google Scholar 

  2. Mubagwa K. Sarcoplasmic reticulum function during myocardial ischemia and reperfusion. Cardiovasc Res 1995; 30: 166–75.

    Article  PubMed  CAS  Google Scholar 

  3. Hawkins C, Xu A, Narayanan N. Comparison of the effects of the membrane-associated Ca2+/calmodulin-dependent protein kinase Ca2+-ATPase function in cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum. Mol Cell Biochem 1995; 142: 131–38.

    Article  PubMed  CAS  Google Scholar 

  4. Liu W, Pasek DA, Meissner G. Modulation of Ca2+-gated cardiac muscle Ca2+-release channel (ryanodine receptor) by mono- and divalent ions. Am J Physiol 1998; 274 (Cell physiol 43): C120-C128.

    PubMed  CAS  Google Scholar 

  5. Zucchi R, Ronca Testoni S, Di Napoli P, Yu G, Gallina S, Bosco G, Ronca G, Calafiore AM, Mariani M. and Barsotti A. Sarcoplasmic reticulum calcium uptake in human myocardium subjected to ischemia and reperfusion during cardiac surgery. J Mol Cell Cardiol 1996; 28: 1693–1701.

    Article  PubMed  CAS  Google Scholar 

  6. Malowski L and Li J. X-ray diffraction and electron microscope studies of the molecular structure of biological membranes. In: Chapman D, editor. Biomembrane structure and function. London: The MacMillan Press Limited; 1983. p. 43–166.

    Google Scholar 

  7. Chamberlain BK, Levitsky DO, Fleischer S. Isolation and Characterisation of Canine Cardiac Sarcoplasmic Reticulum with Improved Ca2+-Transport Properties. J Biol Chem 1983; 258(10): 6602–9.

    PubMed  CAS  Google Scholar 

  8. Feher JJ, Davis MD. Isolation of rat cardiac sarcoplasmic reticulum with improved Ca2+ uptake and ryanodine binding. J Mol Cell Cardiol 1991; 23: 249–58.

    Article  PubMed  CAS  Google Scholar 

  9. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin Phenol Reagent. J Biol Chem 1951; 193: 265–75.

    PubMed  CAS  Google Scholar 

  10. Chen PS Jr, Toribara TY, Warner H. Microdetermination of Phosphorus. Anal Chem 1956; 28 (11): 1756–8.

    Article  CAS  Google Scholar 

  11. Sottocasa GL, Kuylenstierna L, Ernster L, Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 1967; 32(2): 415–38.

    Article  PubMed  CAS  Google Scholar 

  12. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92(4): 778–83.

    PubMed  CAS  Google Scholar 

  13. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuji S, Dhalla NS. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol 1999; 277: H584-H594.

    PubMed  CAS  Google Scholar 

  14. Fried B. Lipids. In: Sherma, J, Fried B editors. Handbook of Thin Layer Chromatography. 2nd ed. Marcel Dekker Inc; 1996. p. 683–714.

  15. Netticadan T, Yu L, Dhalla NS, Panagia V. Palmitoyl carnitine increases intracellular calcium in adult rat cardiomyocytes. J Mol Cell Cardiol 1999; 31: 1357–67.

    Article  PubMed  CAS  Google Scholar 

  16. Colvin RA, Ashavaid TF, Herbette LG. Structure-function studies of canine cardiac sarcolemmal membranes. I. Estimation of receptor sites densities. Biochim Biophys Acta 1985; 812: 601–8.

    Article  PubMed  CAS  Google Scholar 

  17. Ji Y, Loukianov E, Periasamy M. Analysis of sarcoplasmic reticulum Ca2+ transport and Ca2+-ATPase enzymatic properties using mouse cardiac tissue homogenates. Anal Biochem 1999; 69: 236–44.

    Article  Google Scholar 

  18. Feher JJ, Manson NH, Poland JL. The rate and capacity of calcium uptake by sarcoplasmic reticulum in fast, slow and cardiac muscle: Effects of ryanodine and ruthenium red. Arch Biochem Biophys 1988; 265 (1): 171–82.

    Article  PubMed  CAS  Google Scholar 

  19. Movsesian MA, Leveille C, Krall J, Coyler J, Wang JH, Campbell KP. Identification and characterisation of proteins in sarcoplasmic reticulum from normal and failing human left ventricles. J Mol Cell Cardiol 1990; 22: 1477–85.

    Article  PubMed  CAS  Google Scholar 

  20. Inui M, Wang S, Saito A, Fleischer S. Characterisation of junctional and longitudinal sarcoplasmic reticulum from heart muscle. J Biol Chem 1988; 263 (22): 10843–50.

    PubMed  CAS  Google Scholar 

  21. Suyatna FD, Van Veldhoven PP, Borgers M, Mannaerts GP. Phospholipid composition and amphiphile content of isolated sarcolemma from normal and autolytic rat myocardium. J Mol Cell Cardiol 1988; 20: 47–62.

    Article  PubMed  CAS  Google Scholar 

  22. Clayton JC, Hughes E, Middleton DA. Spectroscopic studies of phospholamban variants in phospholipids bilayers. Biochem Soc Trans 2005; 33 (Pt 5): 913–15.

    PubMed  CAS  Google Scholar 

  23. Zhang XM, Kimura Y, Inui M. Effects of phospholipids on the oligomeric state of phospholamban of the cardiac sarcoplasmic reticulum. Circ. J. 2005; 69: 1116–23.

    Article  PubMed  CAS  Google Scholar 

  24. Clayton JC, Hughes E, Middleton DA. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Biochemistry 2005; 44 (51): 17016–26.

    Article  PubMed  CAS  Google Scholar 

  25. Granner DK. Membranes: Structure, Assembly and Function. In: Murray RK, Granner DK, Mayes PA, Rodwell VW, editors. Harper's Biochemistry. 23rd ed. Appleton and Lange, Prentice-Hall International Inc; 1993. p. 467–85.

  26. Gurr MI, Harwood JL. Fatty acid. Structure and Metabolism. In: Gurr MI, Harwood JL, editors. Lipid Biochemistry. An introduction. 4th ed. Chapman and Hall; 1991. p. 23–115.

  27. Ashavaid TF, Kumbhat NS. Isolation and characterization of mitochondria from goat hearts. Indian J Clin Biochem 2005; 20(1): 72–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Souza, K.M., Ashavaid, T.F. Caprine cardiac sarcoplasmic reticulum isolation and biochemical characterisation with emphasis on Ca2+-adenosine triphosphatase. Indian J Clin Biochem 22, 37–44 (2007). https://doi.org/10.1007/BF02912879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912879

Key Words

Navigation