Skip to main content
Log in

Biochemical markers of myocardial injury

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The serum markers of myocardial injury are used to help in establishing the diagnosis of myocardial infarction. The older markers like aspartate amino-transferase, creatine kinase, lactate dehydrogenase etc. lost their utility due to lack of specificity and limited sensitivities. Among the currently available markers cardiac troponins are the most widely used due to their improved sensitivity specificity, efficiency and low turn around time. Studies have shown that cardiac troponins should replace CKMB as the diagnostic ‘gold standard’ for the diagnosis of myocardial injury. The combination of myoglobin with cardiac troponins has further improved the accuracy in the diagnosis of acute coronary syndromes and thereby reducing the hospital stay and patients' money. Among the other new markers of early detection of myocardial damage, heart fatty acid binding protein, glycogen phosphorylase BB and myoglobin/carbonic anhydrase III ratio seem to be the most promising. But the search for the most ideal marker of myocardial injury is still on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nomenclature and criteria for diagnosis of Ischaemic Heart Disease: Report of the Joint International Society and Federation of Cardiology/World Health Organization Task Force on standardization of clinical nomenclature. Circulation 1979; 59: 607–08.

    Google Scholar 

  2. Alpert JS, Thygeson K, Antman E, et al. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959–69.

    Article  PubMed  CAS  Google Scholar 

  3. Mc Queen MJ, Holdir D, El-Maraglin NR. Assessment of the accuracy of serial electrocardiograms in the diagnosis of myocardial infarction. Am Heart J 1983; 105: 258–61.

    Article  Google Scholar 

  4. Armstrong SC. Protein kinase activation and myocardial ischaemia/reperfusion injury. Cardiovasc Res 2004; 61: 427–36.

    Article  PubMed  CAS  Google Scholar 

  5. Varley H, Gowenlock AH, Bell M. Enzymes, In: Practical Clinical Biochemistry, Vol. I, 5th edn. William Heinemann Medical Books Ltd. London 1984; p 685–770.

    Google Scholar 

  6. Baron DN, Bell JL, Oakley C. Serum transaminase in coronary thrombosis and other conditions. J Clin Path 1956; 9: 389–90.

    Article  Google Scholar 

  7. Agress CM. Evaluation of the transaminase test. Am J Cardiol 1979; 3: 74–93.

    Article  Google Scholar 

  8. Kachmar JR. Enzymes, In: Fundamentals of Clinical Chemistry, NW. Tietz, Editor Sounders, Philadelphia 1976; p 674.

    Google Scholar 

  9. Sacks HJ, Lanchantin GF. An elevation of serum transaminases in jaundice states. Am J Clin Path. 1960; 33: 97–108.

    PubMed  CAS  Google Scholar 

  10. Elliot BA, Wilkinson JH, Serum “α-hydroxybutyric dehydrogenase” in myocardial infarction and in liver disease. Lancet 1961; 1: 698–99.

    Article  Google Scholar 

  11. Ebashi S, Toyokura Y, Momoi H, Sugita H. High creatine phosphokinase activity of sera of progressive muscular dystrophy. J Biochem (Japan) 1959; 46: 103–05.

    CAS  Google Scholar 

  12. Doran GR, Wilkinson JH. The origin of the elevated activities of creatine kinase and other enzymes in the sera of patients with myxedema. Clin Chim Acta 1975; 62: 203–07.

    Article  PubMed  CAS  Google Scholar 

  13. Szigmond EK, Starkweather WH, Duboff GS, Flynn KA. Elevated Serum Creatine Phosphokinase activity in a family with malignant hyperpyrexia. Anesth Analg 1972; 51: 827.

    Google Scholar 

  14. LaFair JS, Myerson RM. Alcoholic myopathy. Arch Intern Med 1968; 122: 417–19.

    Article  PubMed  CAS  Google Scholar 

  15. Dubo H, Park DC, Pennigton R, Jt Kalbag RM, Walton JN. Serum creatine kinase in cases of stroke, head injury and meningitis. Lancet 1967; 2: 743–48.

    Article  PubMed  CAS  Google Scholar 

  16. Vassella F, Richterich R, Rossi E. The diagnostic value of serum creatine kinase in neuromuscular and muscular disease. Paediatrics 1965; 35: 322–30.

    CAS  Google Scholar 

  17. Lee TH, Goldman L. Serum enzymes assay in the diagnosis of acute myocardial infarction. Recommendation based on a quantitative analysis. Ann Intern Med 1986; 105: 221–33.

    PubMed  CAS  Google Scholar 

  18. Seckinger DL, Vazquez DA, Rosenthal PK, Mendizabal RC. Cardiac isoenzyme methodology and the diagnosis of acute myocardial infarction. Am J Clin Pathol 1983; 80: 164–69.

    PubMed  CAS  Google Scholar 

  19. Roberts R. Enzymatic diagnosis of acute myocardial infarction. Chest 1988; 93: 3S-6S.

    Article  PubMed  CAS  Google Scholar 

  20. Collison PO, Rosalki SB, Kuwana T, et al. Early diagnosis of acute myocardial infarction by CK-MB mass measurements. Ann Clin Biochem 1992; 29: 43–47.

    Google Scholar 

  21. Lott JA, Heinz JW, Reger KA. Time changes of creatine kinase and creatine kinase MB isoenzyme versus discrimination values in the diagnosis of acute myocardial infarction: what is the optimal method for displaying the data? Eur J Clin Chem Biochem 1995; 33: 491–96.

    CAS  Google Scholar 

  22. Panteghini M. Diagnostic application of CK-MB mas determination. Clin Chim Acta 1998; 272: 23–31.

    Article  PubMed  CAS  Google Scholar 

  23. Ravkilde J, Hansen AB, Horder M, Jorgensen PJ, Thygesen K. Risk stratification in suspected acute myocardial infarction based on a sensitive immunoassay for creatine kinase isoenzyme MB. Cardiology 1992; 80: 143–51.

    Article  PubMed  CAS  Google Scholar 

  24. Grande P, Granborg J, Clemmensen P, Sevilla DC, Wagner NB, Wagner GS. Indices of reperfusion in patients with acute myocardial infarction using characteristics of the CK-MB time activity curve. Am Heart J 1991; 122: 400–08.

    Article  PubMed  CAS  Google Scholar 

  25. Nageh T, Sherwood RA, Harris BM, Byrne JA, Thomas MR. Cardiac troponin T and I and creatine kinase—MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol 2003; 92: 285–93.

    Article  PubMed  Google Scholar 

  26. El Allaf M, Chapelle JP, El Allaf E, et al. Differentiating muscle damage from myocardial injury by means of the serum creatine kinase (CK) isoenzyme MB mass measurement/total CK activity ratio. Clin Chem 1986; 32: 291–95.

    PubMed  Google Scholar 

  27. Thrompson WG, Mahr RG, Yohannan WS, Pincus MR. Use of creatine kinase MB isoenzyme for diagnosing myocardial infarction when total creatine kinase activity is high. Clin Chem 1988; 34: 2208–10.

    Google Scholar 

  28. Keffer JH. Myocardial markers of injury-evolution and insights. Am J Clin Pathol 1996; 105: 305–20.

    PubMed  CAS  Google Scholar 

  29. Arenas J, Diaz V, Liras G, et al. Activities of creatine kinase and its isoenzymes in serum in verious skeletal muscle disorders. Clin Chem 1988; 34: 2460–62.

    PubMed  CAS  Google Scholar 

  30. Puleo PR, Guadagno PA, Roberts R, et al. Early diagnosis of acute myocardial infarction based on assay for subforms of creatine kinase—MB. Circulation 1990; 82: 759–64.

    PubMed  CAS  Google Scholar 

  31. Puleo PR, Meyer D, Wathen C, et al. Use of a rapid assay of subforms of creatine kinase MB to diagnose or rule out acute myocardial infarction. N Engl J Med 1994; 331: 561–66.

    Article  PubMed  CAS  Google Scholar 

  32. Panteghini M. Serum isoforms of creatine kinase isoenzymes. Clin Biochem 1988; 21: 211–18.

    Article  PubMed  CAS  Google Scholar 

  33. Wu ABW. Creatine kinase isoforms in ischaemic heart disease. Clin Chem 1989; 35: 7–13.

    PubMed  CAS  Google Scholar 

  34. Prager NP, Suzuki T, Jaffe AS, Sobel BE, Abendschein DR. The nature and time course of generation of the isoforms of MB creatine kinase in vivo. J Am Coll Cardiol 1992; 20: 414–19.

    Article  PubMed  CAS  Google Scholar 

  35. Pentilla K, Koukkunen H, Halinen M, Rantanen T, Pyorala K, Punnone PI. Myoglobin, creatine kinase MB isoforms and creatine kinase MB mass in early diagnosis of myocardial infarction in patients with acute chest pain. Clin Biochem 2002; 35: 647–53.

    Article  Google Scholar 

  36. Christenson RH, Azzazy HM. Biochemical markers of the acute coronary syndromes. Clin Chem 1998; 44: 1855–1864.

    PubMed  CAS  Google Scholar 

  37. Gilkeson G, Stone MJ, Waterman M, Ting R, Gomez-Sanchez CE, Hull A, Willerson JT. Detection of myoglobin by radioimmunoassay in human sera: Its usefulness and limitations as an emergency room screening test for acute myocardial infarction. Am Heart J 1978; 95: 70–75.

    Article  PubMed  CAS  Google Scholar 

  38. deWinter, Koster R, Sturk A, Sanders G. Value of myoglobin, troponin T and CKMB m in ruling out an acute myocardial infarction in the emergency room. Circulation 1995; 92: 3401–07.

    CAS  Google Scholar 

  39. Hetland O, Dickstein K. Cardiac markers in the early h of acute myocardial infarction: clinical performance of creatine kinase, creatine kinase MB isoenzyme (activity and mass concentration), creatine kinase MM and MB isoform ratios, myoglobin and cardiac troponin T. Scand J Clin Lab Invest 1996; 56: 701–13.

    Article  PubMed  CAS  Google Scholar 

  40. Jernberg T, Lindahl B, James S, Ranquist G, Wallentin L. Comparison between strategies using creatine kinase—MB (mass), myoglobin and troponin T in the early detection or exclusion of acute myocardial infarction in patients with chest pain and a non-diagnostic electrocardiogramm. Am J Cardiol 2000; 86: 1367–71.

    Article  PubMed  CAS  Google Scholar 

  41. Mair J, Morandell D, Genser N, Lechleitner P, Dienstl F, Puschendorf B. Equivalent early sensitivities of myoglobin, creatine kinase MB-mass, creatine kinase isoform ratios and cardiac tropinim I and T for acute myocardical infarction. Clin Chem 1995; 41: 1266–72.

    PubMed  CAS  Google Scholar 

  42. Zimmerman J, Fromm R, Meyer D. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. Circulation 1999; 99: 1671–77.

    PubMed  CAS  Google Scholar 

  43. Pantighini M. Biochemical markers in acute coronary syndromes. Lab Medica International 2003; 20(6): 6–7.

    Google Scholar 

  44. Katus HA, Remppis A, Scheffold T, Dienderich KW, Kubler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and non-reperfused myocardial infarction. Am J Cardial 1991; 67: 1360–67.

    Article  CAS  Google Scholar 

  45. Adams JE, Schechtman KB, Landt Y, et al. Comparable detection of AMI by CK-MB isoenzyme and cardiac tropnin I. Clin Chem 1994; 40: 1291–95.

    PubMed  CAS  Google Scholar 

  46. Tymchak WJ, Armstrong PW. Spectrum of ischaemic heart disease and the role of biochemical markers. Clin Lab Med 1997; 17: 701–25.

    PubMed  CAS  Google Scholar 

  47. Rottbauer W, Greten T, Muller-Bard off M, et al. Troponin T:A diagnostic marker for myocardial infarction and minor cell damage. Eur Heart J 1996; 17: (Suppl. F), 3–8.

    PubMed  Google Scholar 

  48. Hamm CW. Cardiac-specific troponins in acute coronary syndromes in Braunwald, E (ed.) Heart Disease: A text-book of cardiovascular Medicine. 5th ed 1997 Update vol. 3. p 1–10.

  49. Ravikilde J, Horder M, Gerhardt W, Ljungdahl J, Petterson T, Tryding N, et al. Diagnostic performance and prognostie value of serum Troponin T in suspected acute myocardial infarction. Send J Clin Lab Invest 1993; 53: 677–85.

    Article  Google Scholar 

  50. Wu AHB, Feng YJ, Controls JH. Prognostic value of cardiac troponin I in chest pain patients. Clin Chem 1996; 42: 651–52.

    PubMed  CAS  Google Scholar 

  51. Galvani M, Ottari F, Ferrini D, Ladenson JH, Destro A, Baccos D, et al. Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation 1997; 95: 2053–59.

    PubMed  CAS  Google Scholar 

  52. Ohman EM, Armstrong PW, Christenson RH, Granger CB, Katus HA, Hamm CW, et al. Cardiac troponin T levels for risk stratification in acute ischaemia. N Engl J Med 1996; 335: 133–41.

    Article  Google Scholar 

  53. Olatidoye AG, Wu AH, Feng Y, Waters D. Prognostic role of Troponin T versus Troponin I in unstable Agnina Pectoris for cardiac events with meta-analysis comparing Published studies. Am J Cardiol 1998; 81: 1405–10.

    Article  PubMed  CAS  Google Scholar 

  54. Heidenreich PA, Allogiamento T, Melsop K, McDonald KM, Alan SGo, Heatky MA. The prognostic valve of troponin in patients with non-ST elevation acute coronary syndromes: a meta analysis. J Am Coll Cardiol 2001; 38: 478–85.

    Article  PubMed  CAS  Google Scholar 

  55. Rao SV, Ohman EM, Granger CB, et al. Prognostic value of isolated troponin elevations across the spectrum of chest pain syndromes. Am J Cardiol 2003; 91: 936–40.

    Article  PubMed  CAS  Google Scholar 

  56. Apple FS, Henry TD, Berger CR, Landt YA. Early monitoring of serum cardiac Troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Path 1996; 105: 6–10.

    PubMed  CAS  Google Scholar 

  57. Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Waldes R Jr. National Academy of Clinical Biochemistry standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery disease. Clin Chem 1999; 45: 1104–21.

    PubMed  CAS  Google Scholar 

  58. Bodor GS, Porterfield D, Voss E, et al. Cardiac troponin T composition in normal and regenerating human skeletal muscle (Abstract). Clin Chem 1995; 41: s148.

    Google Scholar 

  59. Ikeda J, Zenimoto M, Kita M, Mori M. Usefulness of cardiac troponin I in patients with acute myocardial infarction. Rinsho Byori 2002; 50: 982–86.

    PubMed  CAS  Google Scholar 

  60. Sciries BM, Morrow DA. Troponins in acute coronary syndromes. Prog Cardiovasc Dis 2004; 47: 177–88.

    Article  CAS  Google Scholar 

  61. Vaananen HK, Syrjala H, Rahkila P, et al. Serum carbonic anhydrase III and myoglobin concentration in acute myocardial infarction. Clin Chem 1990; 36: 635–38.

    PubMed  CAS  Google Scholar 

  62. Brogan GX Jr, Vuori J, Friedman S, Mc Cuskey CF, Thode HC Jr, Vaananen HK, Colling DS, Bock JL. Improved specificity of myoglobin plus carbonic anhydrase assary versus that of creatine kinase-MB for early diagnosis of acute myocardial infarction. Am Emerg Med 1996; 28: 245–46.

    Article  Google Scholar 

  63. Beuerle JR, Azzazy HM, Styba G, Duh SH, Christenson RH. Characteristics of myoglobin, Carbonic anhydrase III and the myoglobin/arbonic anhydrase III ratio in trauma, exercise and myocardial infarction patients. Clin Chim Acta 2000; 294: 115–28.

    Article  PubMed  CAS  Google Scholar 

  64. Vuotikka P, Uusimaa P, Niemela M, Vaananen K, Vuori J, Peuhkurinen K. Serum myoglobin/Carbonic anhydrase III ration as a marker of reperfusion after myocardial infarction. Int J Cardiol 2003; 91: 137–44.

    Article  PubMed  Google Scholar 

  65. Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B. Ghycogen phophorylase ischaemic injury and infarction. Mol Cell Biochem 1996; 160–161: 289–95.

    Article  PubMed  Google Scholar 

  66. Mair J. Glycogen phophorylase isoenzyme BB to diagnose ischaemic myocardial damage. Clin Chem Acta 1998; 272: 79–86.

    Article  CAS  Google Scholar 

  67. Mair J, Puschendorf B, Smidt J, Lechleitner P, Diestl F, Noll F et al. Early release of glycogen phosphorylase in patients with unstable angina and transient ST-T alteration. Br Heart J 1994; 72: 125–27.

    Article  PubMed  CAS  Google Scholar 

  68. Mair P, Mair J, Krause EG, Balogh D, Puschendorf B, Rabitzsch G. Ghycogen phosphorylase isoenzyme BB mass release after coronary artery bypass grafting. Eur J Clin Chem Biochem 1994; 32: 543–47.

    CAS  Google Scholar 

  69. Wu AH. Analytical and clinical evaluation of new diagnostic tests for myocardial damage. Clin Chem Acta 1998; 272: 11–21.

    Article  CAS  Google Scholar 

  70. Kleine AH, Glatz JF, Van Nieuwenhoven FA, Vander Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infaction in man. Mol Cell Biochem 1992; 116: 155–62.

    Article  PubMed  CAS  Google Scholar 

  71. Ishii J, Wang JH, Naruse H, Taga S, Kinoshita M, Kurokawa H, Iwase M, Kondo T, Nomura M, Nagamura Y, Watanabe Y, Hishida H, Tanaka T, Kawamura K. Serum concentrations of myoglobin Vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 1997; 43: 1372–78.

    PubMed  CAS  Google Scholar 

  72. Okamoto F, Sohmiya K, Ohkaru Y, Kawamura K, Asayma K, Kimura H, Nishimura S, Ishii H, Sunahara N, Tanaka T. Human heart-type cytoplasmic fatty acid binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in Comparison with myoglobin and creatine Kinase isoenzyme MB. Clin Chem Lab Med 2000; 38: 231–38.

    Article  PubMed  CAS  Google Scholar 

  73. Chan CP, Sanderson JE, Glatz JF, Chang WS, Hempel A, Renneberg R. A superior early myocardial infarction marker Human heart-type fatty acid binding protein. Z Kardiol 2004; 93: 388–97.

    Article  PubMed  CAS  Google Scholar 

  74. Seino Y, Tomita Y, Takano T, Ohbayashi K. Office cardiologists cooperative study on whole blood rapid panel tests in patients with suspicious acute myocardial infarction: Comparison between heart-type fatty acid binding protein and Troponin T tests. Circ J 2004; 68: 144–48.

    Article  PubMed  Google Scholar 

  75. Hasegawa T, Yoshimura N, Oka S, Ootaki Y, Toyoda Y, Yamaguchi M. Evaluation of heart fatty acid-binding protein as rapid indicator of assessment of myocardial damage in pediatric cardiac surgery. Thorac Cardiovasc Surg 2004; 127: 1697–02.

    Article  CAS  Google Scholar 

  76. Isobe M, Nagai R, Ueda S, et al. Quantitative relationship between left ventricular function and serum cardiac myosin light chain I level after coronary reperfusion in patients with acute myocardial infarction. Circulation 1987; 76: 1251–61.

    PubMed  CAS  Google Scholar 

  77. Panteghini M. Cardiac myosin light chains. Lab Med 1992; 23: 318–322.

    Google Scholar 

  78. Usui A, Kato K, Sara H, Minaguchi K, Abe T, Murase M, Tanaka M, Takeuchi E. S-100 a O protein in serum during acute myocardial infarction. Clin Chem 1990; 36: 639–41.

    PubMed  CAS  Google Scholar 

  79. Kaneko N, Matsuda R, Hosoda S, Kajita T, Ohta Y. Measurement of plasma annexin V by ELISA in early detection of acute myocardial infarction. Chin Chim Acta 1996; 251: 65–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigam, P.K. Biochemical markers of myocardial injury. Indian J Clin Biochem 22, 10–17 (2007). https://doi.org/10.1007/BF02912874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912874

Key words

Navigation