Skip to main content
Log in

Cosmology after COBE—Review for particle physicists

  • Particle Astrophysics
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

I summarize the following current topics in cosmology: (1) The near-success of Cold Dark Matter (CDM) in predicting the COBE fluctuation amplitude, which favors the hypothesis that structure formed in the universe through gravitational collapse. (2) The indications that ω ≈ 1 and that the power spectrum has a little more power on supercluster and larger scales than CDM. These are suggested by the IRAS and CfA redshift surveys and POTENT galaxy peculiar velocity analysis, and also by the COBE data. (3) The consequent demise of CDM and the rise of hybrid schemes such as Cold+Hot Dark Matter (C+HDM). (4) The possible implications for neutrino masses and mixings, and for cosmology, of the recent results on solar neutrinos. (5) CERN experiments onv μ -v r oscillations, which may be sufficiently sensitive to detect thev r if its mass lies in the cosmologically interesting mass range 1–102 eV. (6) Dark matter searches, including the searches for WIMPs and axions, and the French, Polish, and Berkeley-Livermore-Mt. Stromlo MACHO searchs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Misner, inCosmology, History, and Theology W. Yourgrau & A.D. Breck, eds. (Plenum Press) (1977) 75.

  2. Recent reviews are A. Linde,Particle Physics and Inflationary Cosmology (1990) (Harwood); K. Olive, Phys. Rep. 190 (1990) 307.

  3. J.R. Primack & G.R. Blumenthal inClusters and Groups of Galaxies F. Mardirossian, G. Giuricin & M. Mezzetti, eds. (D. Reidel, Dordrecht) (1984) 435; reprinted inParticle Physics and Cosmology: Dark Matter, M. Srednicki, ed. (North-Holland, 1990) 90.

    Google Scholar 

  4. G.R. Blumenthal, S. Faber, J.R. Primack, & M. Rees, Nature,311 (1984) 517.

    Article  ADS  Google Scholar 

  5. M. Davis, G. Efstathiou, C. Frenk & S.D.M. White, Ap. J.292 (1985) 371.

    Article  ADS  Google Scholar 

  6. S.J. Maddoxet al., M.N.R.A.S.242 (1990) 43.

    ADS  Google Scholar 

  7. C.A. Collins, R.C. Nichol & S.L. Lumsden, M.N.R.A.S.254 (1992) 295.

    ADS  Google Scholar 

  8. J.A. Peacock & M.J. West, M.N.R.A.S. (1992) in press; S. Olivier, J.R. Primack, G. Blumenthal & A. Dekel, Ap. J. (1993) in press.

  9. For a recent review, see M. Davis, G. Efstathiou, C.S. Frenk and S.D.M. White Nature356 (1992) 489.

    Article  ADS  Google Scholar 

  10. E.g., A. Babul & S.D.M. White, M.N.R.A.S.253 (1991) 31.

    ADS  Google Scholar 

  11. G. Smootet al., Ap. J. Lett.396 (1992) L1. It was announced at a conference in Berkeley in December 1992 that an MIT balloon experiment that has mapped CBR fluctuations over about a quarter of the sky agrees very well with COBE.

    Article  ADS  Google Scholar 

  12. In a sphere of this radius, the rms fluctuation in the number of optically bright glaxies is unity. As usual, we use the reduced Hubble parameterh ≡ H o /[100 km s−1 Mpc−1].

  13. G. Efstathiou, W.J. Sutherland & S.J. Maddox, Nature,348 (1990) 705.

    Article  ADS  Google Scholar 

  14. See also, J. Holtzman & J.R. Primack, Ap. J. (1993) in press.

  15. P. Lilje, Ap. J. Lett.386 (1992) L33; N. Bahcall & R. Cen, Ap. J. (1992) in press.

    Article  ADS  Google Scholar 

  16. R. Scaramella, Ap. J. Lett.390 (1992) L57.

    Article  ADS  Google Scholar 

  17. C. Park, J.R. Gott & L.N. da Costa, Ap. J. Lett.392 (1992) L51.

    Article  ADS  Google Scholar 

  18. G. Efstathiou, J.R. Bond & S.D.M. White, M.N.R.A.S.258 (1992) 1P.

    Google Scholar 

  19. See e.g. the talks by A. Dekel and A. Yahil inProceedings of the Rencontre de Blois 1992: Particle Astrophysics, ed. J. Tran Thanh Van (Editions Frontieres, 1992).

  20. J.P. Huchra, Science256 (1992) 321; S. van den Bergh, Science258 (1992) 421.

    Article  ADS  Google Scholar 

  21. E.g., R. Cen, N. Y. Gnedin, L.A. Kofman & J.P. Ostriker, Ap. J. Lett. (1992) in press; F.C. Adamset al., Fermilab preprint (1992); A.R. Liddle & D.H. Lyth, Sussex preprint (1992).

  22. For a review, see e.g. J.R. Primack, inProc. IUPAP Conf. Primordial Nucleosynthesis and Evolution of Early Universe, K. Sato, ed. (Kluwer) (1991) 193.

  23. R.K. Schaefer & Q. Shafi, Nature359 (1992) 199; J. Holtzman and J. Primack, Ap. J. (1993) in press.

    Article  ADS  Google Scholar 

  24. With ω-1, the age of the universet o=13.04h −130 Gy, so avoiding conflict with Globular Cluster and other age estimates requiresh 50 ≲ 1.

  25. Once the neutrinos decouple, their momenta just redshift; see e.g., Weinberg,Gravitation and Cosmology (Wiley) (1972) 535.

  26. K. Shafi & F. Stecker, Phys. Rev. Lett.53 (1984) 1292.

    Article  ADS  Google Scholar 

  27. R. Valdarnini & S. Bonometto, Astr. Astrophys.146 (1985) 235; S. Achilli, F. Occhionero & R. Scaramella Ap. J.299 (1985) 577; L. Fang, S. Xiang & S. Li, Sci. Sin.28 (1985) 301.

    ADS  Google Scholar 

  28. J. Holtzman, Ap. J. Supp.71 (1989) 1.

    Article  ADS  Google Scholar 

  29. A.N. Taylor & M. Rowan-Robinson, Nature359 (1992) 396.

    Article  ADS  Google Scholar 

  30. M. Davis F.J. Summers & D. Schlegel, Nature359 (1992) 393.

    Article  ADS  Google Scholar 

  31. A. Klypin, J. Holtzman, J.R. Primack & E. Regős, UCSC preprint (1992).

  32. J.P. Ostriker and Y. Suto, Ap. J.348 (1990) 378; Y. Suto, R. Cen, and, J.O. Ostriker, Ap. J.395 (1992) 1.

    Article  ADS  Google Scholar 

  33. T. Gaieret al., Ap. J. Lett.398 (1992) L1.

    Article  ADS  Google Scholar 

  34. K.M. Gorski, Ap. J. Lett.398 (1992) L5.

    Article  ADS  Google Scholar 

  35. See e.g. L. Kofmanet al., inProceedings, Workshop on Large Scale Structure and Peculiar Motions in the Universe, D.W. Latham and L.N. da Costa, eds. (Astronomical Society of the Pacific) (1991) 251; D.S. Salopek, Phys. Rev.D45 (1992) 1139.

  36. D. Spergel, personal communication.

  37. H. Hodges and J.R. Primack, Phys. Rev.D43 (1991) 3155.

    ADS  Google Scholar 

  38. G.M. Fulleret al., Ap. J.389 (1992) 517.

    Article  ADS  Google Scholar 

  39. T. Yanagida, Prog. Theor. Phys.B135 (1978) 66; M. Gell-Mann, P. Raymond & R Slansky, inSupergravity ed. P. van Nieuwenhuizen and D. Freedman (North-Holland, Amsterdam) (1979) 315.

    Google Scholar 

  40. For more detailed models, see e.g. S.A. Bludman, D.C. Kennedy, and P.G. Langacker, Phys. Rev.D45 (1992) 1810; J. Ellis, J.L. Lopez & D.V. Nanopoulos, Preprint CERN-TH.6569/92 (1992); S. Dimopoulos, L. Hall & S. Raby, preprint LBL-32484 (1992).

    Article  ADS  Google Scholar 

  41. J.R. Primack, D. Seckel & B. Sadoulet, Ann. Rev. Nucl. Part. Sci.38 (1988) 751; P.F. Smith and J.D. Lewin, Phys. Rep.187 (1990) 203.

    Article  ADS  Google Scholar 

  42. B.J. Carr & J.R. Primack, Nature,345 (1990) 478; J.R. Bond, B.J. Carr & C.J. Hogan, Ap. J.367 (1991) 420.

    Article  ADS  Google Scholar 

  43. M.J. Irwinet al., Astr. J.98 (1989) 1989.

    Article  ADS  Google Scholar 

  44. B. Paczynski, Ap. J.304 (1986) 1; K. Griest, Ap. J.366 (1991) 412; K. Griestet al., Ap. J. Lett.372 (1991) L79.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primack, J.R. Cosmology after COBE—Review for particle physicists. Pramana - J. Phys. 41 (Suppl 1), 441–453 (1993). https://doi.org/10.1007/BF02908101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908101

Keywords

Navigation