Skip to main content
Log in

Testing creation cold dark matter cosmology with the radiation temperature–redshift relation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

A Correction to this article was published on 12 November 2020

This article has been updated

Abstract

The standard \(\varLambda \hbox {CDM}\) model can be mimicked at the background and perturbative levels (linear and non-linear) by a class of gravitationally induced particle production cosmology dubbed CCDM cosmology. However, the radiation component in the CCDM model follows a slightly different temperature–redshift T(z)-law which depends on an extra parameter, \(\nu _r\), describing the subdominant photon production rate. Here we perform a statistical analysis based on a compilation of 36 recent measurements of T(z) at low and intermediate redshifts. The likelihood of the production rate in CCDM cosmologies is constrained by \(\nu _r = 0.024^{+0.026}_{-0.024}\) (\(1\sigma \) confidence level), thereby showing that \(\varLambda \)CDM (\(\nu _r=0\)) is still compatible with the adopted data sample. Although being hardly differentiated in the dynamic sector (cosmic history and matter fluctuations), the so-called thermal sector (temperature law, abundances of thermal relics and CMB power spectrum) offers a clear possibility for crucial tests confronting \(\varLambda \)CDM and CCDM cosmologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 12 November 2020

    The publication of this article unfortunately contained a mistake. Equation��2 was not correct, you can find the corrected equation below.

Notes

  1. Another possible uninformative prior would be Jeffreys prior. However, this prior diverges for \(\nu _r\rightarrow 0\) and the number of available data is enough for the results to be weakly dependent on the choice of uninformative priors [69], so we use only flat prior.

References

  1. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  2. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  3. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Lima, J.A.S.: Braz. J. Phys. 36, 1109 (2004). arXiv:astro-ph/0402109

  5. Caldwell, R.R., Kamionkowski, M.: Ann. Rev. Nucl. Part. Sci. 59, 397 (2009). arXiv:0903.0866 [astro-ph.CO]

  6. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726

  7. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011). arXiv:1011.0544 [gr-qc]

  8. de Martino, I., De Laurentis, M., Capozziello, S.: Universe 1(2), 123 (2015). arXiv:1507.06123 [gr-qc]

  9. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rep. 692, 1 (2017). arXiv:1705.11098 [gr-qc]

  10. Nojiri, S., Odintsov, S.D.: eConf C 0602061, 06 (2006)

  11. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007). arXiv:hep-th/0601213

    Article  MathSciNet  Google Scholar 

  12. Capozziello, S., De Laurentis, M.: Phys. Rep. 509, 167 (2011). arXiv:1108.6266 [gr-qc]

  13. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  14. Steinhardt, P.J.: Philos. Trans. R. Soc. Lond. A 361, 2497 (2003)

    Article  ADS  Google Scholar 

  15. Carvalho, F.C., Alcaniz, J.S., Lima, J.A.S., Silva, R.: Phys. Rev. Lett. 97, 081301 (2006). arXiv:astro-ph/0608439

    Article  ADS  Google Scholar 

  16. Demianski, M., Piedipalumbo, E., Rubano, C., Tortora, C.: Astron. Astrophys. 431, 27 (2005). arXiv:astro-ph/0410445

    Article  ADS  Google Scholar 

  17. Basilakos, S., Plionis, M., Lima, J.A.S.: Phys. Rev. D 82, 083517 (2010). arXiv:1006.3418

  18. Lima, J.A.S., Basilakos, S., Solà, J.: Mon. Not. R. Astron. Soc. 431, 923 (2013). arXiv:1209.2802

  19. Perico, E.L.D., Lima, J.A.S., Basilakos, S., Solà, J.: Phys. Rev. D 88, 2063531 (2013). arXiv:1306.0591

  20. Lima, J. A. S., Basilakos, S., Solà, J.: Gen. Relativ. Gravit. 47, 40 (2015). arXiv:1412.5196

  21. Lima, J.A.S., Basilakos , S., Solà, J.: Eur. Phys. J. C 76 228 (2016). arXiv:1509.00163

  22. de Martino, I.: Symmetry 10, 372 (2018). arXiv:1809.00550 [astro-ph.CO]

  23. Wang, B., Abdalla, E., Atrio-Barandela, F., Pavon, D.: Rep. Prog. Phys. 79(9), 096901 (2016). arXiv:1603.08299 [astro-ph.CO]

  24. Capozziello, S., Francaviglia, M., Mercadante, S.: Found. Phys. 39, 1161 (2009). arXiv:0805.3642 [gr-qc]

  25. Nunes, R.C., Pan, S., Saridakis, E.N.: Phys. Rev. D 94(2), 023508 (2016). arXiv:1605.01712 [astro-ph.CO]

  26. Jamil, M., Saridakis, E.N., Setare, M.R.: Phys. Rev. D 81, 023007 (2010). arXiv:0910.0822 [hep-th]

  27. Chen, X.M., Gong, Y.G., Saridakis, E.N.: JCAP 0904, 001 (2009). arXiv:0812.1117 [gr-qc]

  28. Faraoni, V., Dent, J.B., Saridakis, E.N.: Phys. Rev. D 90(6), 063510 (2014). arXiv:1405.7288 [gr-qc]

  29. Lima, J.A.S., Jesus, J.F., Oliveira, F.A.: J. Cosmol. Astropart. Phys. 011, 027 (2010). arXiv:0911.5727

  30. Lima, J.A.S., Basilakos, S., Costa, F.E.M.: Phys. Rev. D 86, 103534 (2012). arXiv:1205.0868

  31. Jesus, J.F., Oliveira, F.A., Basilakos, S., Lima, J.A.S.: Phys. Rev. D 84, 063511 (2011). arXiv:1105.1027

  32. Mimoso, J.P., Pavón, D.: Phys. Rev. D 87, 047302 (2013). arXiv:1302.1972

  33. Komatsu, N., Kimura, S.: Phys. Rev. D 89, 123501 (2014). arXiv:1402.3755

  34. Jesus, J.F., Pereira, S.H.: JCAP 07, 040 (2014). arXiv:1403.3679

  35. Chakraborty, S., Pan, S., Saha, S.: Phys. Lett. B 738, 424 (2014)

    Article  ADS  Google Scholar 

  36. Ramos, R.O., dos Santos, M.V., Waga, I.: Phys. Rev. D 89, 083524 (2014). arXiv:1404.2604

  37. dos Santos, M.V., Waga, I., Ramos, R.O.: Phys. Rev. D 90, 127301 (2014)

    Article  ADS  Google Scholar 

  38. Lima, J.A.S., Santos, R.C., Cunha, J.V.: J. Cosmol. Astropart. Phys. 03, 027 (2016). arXiv:1508.07263

  39. Fixsen, D.J.: Astrophys. J. 707, 916 (2009). arXiv:0911.1955 [astro-ph.CO]

  40. Aghanim, N. et al. [Planck Collaboration]. arXiv:1807.06209 [astro-ph.CO]

  41. Lima, J.A.S.: Phys. Rev. D 54, 2571 (1996). arXiv:gr-qc/9605055

  42. Lima, J.A.S.: Gen. Relativ. Gravit. 29, 805 (1997). arXiv:gr-qc/9605056

  43. Lima, J.A.S., Abramo, L.R.W.: Phys. Lett. A 257, 123 (1999). arXiv:gr-qc/9606067

  44. Lima, J.A.S., Silva, A.I., Viegas, S.M.: MNRAS 312, 747 (2000)

    Article  ADS  Google Scholar 

  45. Komatsu, N., Kimura, S.: Phys. Rev. D 92, 043507 (2015). arXiv:1503.05895

  46. de Martino, I., Atrio-Barandela, F., da Silva, A., Ebeling, H., Kashlinsky, A., Kocevski, D., Martins, C.J.A.P.: Astrophys. J. 757, 144 (2012). arXiv:1203.1825 [astro-ph]

  47. de Martino, I., Gnova-Santos, R., Atrio-Barandela, F., Ebeling, H., Kashlinsky, A., Kocevski , D., Martins, Astrophys. C.J.A.P.: J. 808(2), 128 (2015). arXiv:1502.06707 [astro-ph.CO]

  48. de Martino, I., Martins, C.J.A.P., Ebeling, H., Kocevski, D: Phys. Rev. D 94(8), 083008 (2016). arXiv:1605.03053 [astro-ph.CO]

  49. Avgoustidis, A., Gnova-Santos, R.T., Luzzi, G., Martins, C.J.A.P.: Phys. Rev. D 93(4), 043521 (2016). arXiv:1511.04335 [astro-ph.CO]

  50. Luzzi, G., Shimon, M., Lamagna, L., Rephaeli, Y., De Petris, M., Conte, A., De Gregori, S., Battistelli, E.S.: Astrophys. J. 705, 1122 (2009)

    Article  ADS  Google Scholar 

  51. Luzzi, G., Gnova-Santos, R.T., Martins, C.J.A.P., De Petris, M., Lamagna, L.: JCAP 1509(09), 011 (2015). arXiv:1502.07858 [astro-ph.CO]

  52. Hurier, G., Aghanim, N., Douspis, M., Pointecouteau, E.: Astron. Astrophys. 561, A143 (2014)

    Article  ADS  Google Scholar 

  53. Saro, A. et al. [SPT Collaboration].: Mon. Not. R. Astron. Soc. 440(3), 2610 (2014). arXiv:1312.2462 [astro-ph.CO]

  54. Prigogine, I., et al.: Gen. Relativ. Gravit. 21, 767 (1989)

    Article  ADS  Google Scholar 

  55. Lima, J.A.S., Calvão, M.O., Waga, I.: Cosmology, thermodynamics and matter creation. In: Frontier Physics, Essays in Honor of Jayme Tiomno. World Scientific, Singapore (1990). arXiv:0708.3397

  56. Calvão, M.O., Lima, J.A.S., Waga, I.: Phys. Lett. A 162, 223 (1992)

    Article  ADS  Google Scholar 

  57. Lima, J.A.S., Germano, A.S.M.: Phys. Lett. A 170, 373 (1992)

    Article  ADS  Google Scholar 

  58. Lima, J.A.S., Baranov, I.: Phys. Rev. D 90, 043515 (2014). arXiv:1411.6589

  59. de Groot, S.R., van Leeuwen, W.A.,van Weert, CG.: Relativistic Kinetic Theory. North-Holland Publishing Company, North-Holland (1980)

  60. Luzzi, G., Shimon, M., Lamagna, L., Rephaeli, Y., De Petris, M., Conte, A., De Gregori, S., Battistelli, E.S.: Astrophys. J. 705, 1122 (2009)

    Article  ADS  Google Scholar 

  61. Srianand, R., Noterdaeme, P., Ledoux, C., Petitjean, P.: Astron. Astrophys. 482, L39 (2008)

    Article  ADS  Google Scholar 

  62. Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C., López, S.: Astron. Astrophys. 526, L7 (2011)

    Article  ADS  Google Scholar 

  63. Cui, J., Bechtold, J., Ge, J., Meyer, D.M.: Astrophys. J. 633, 649 (2005)

    Article  ADS  Google Scholar 

  64. Ge, J., Bechtold, J., Black, J.H.: Astrophys. J. 474, 67 (1997)

    Article  ADS  Google Scholar 

  65. Srianand, R., Petitjean, P., Ledoux, C.: Nature (London) 408, 931 (2000)

    Article  ADS  Google Scholar 

  66. Hurier, G., Aghanim, N., Douspis, M., Pointecouteau, E.: Astron. Astrophys. 561, A143 (2014). arXiv:1311.4694 [astro-ph.CO]

  67. Mather, J.C., Fixsen, D.J., Shafer, R.A., Mosier, C., Wilkinson, D.T.: Astrophys. J. 512, 511 (1999)

    Article  ADS  Google Scholar 

  68. Hinshaw, G., et al.: WMAP Collaboration. Astrophys. J. Suppl. 180, 225 (2009). arXiv:0803.0732 [astro-ph]

  69. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  70. Riess, A.G., et al.: arXiv:1604.01424v1

  71. Baranov, I., Lima, J.A.S.: Phys. Lett. B 751, 338 (2015). arXiv:1505.02743

  72. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Elsevier Science, New York (2013)

    MATH  Google Scholar 

  73. Bernstein, J.: Kinetic Theory in the Expanding Universe. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are partially supported by CNPq, FAPESP and CAPES (LLAMA project, INCT-A and PROCAD2013 projects). JFJ acknowledges financial support from FAPESP, Process \(\hbox {n}^\mathrm {o}\) 2017/05859-0, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuri P. R. Baranov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Kinetic Theory and Temperature Law

Appendix A: Kinetic Theory and Temperature Law

In this appendix, we use the extended Boltzmann equation for gravitationally particle production, proposed in previous works [58, 71], to get the temperature evolution of the relic radiation.

In a multi-fluid approach, each component has its own equation with its corresponding production rate. The extended Boltzmann equation describing this gravitational, non-collisional (each component evolves freely from the others), process is

$$\begin{aligned} \frac{\partial f_i}{\partial t}-H\left( 1-\frac{\varGamma _i}{3H} \right) p\frac{\partial f_i}{\partial p}=0, \end{aligned}$$
(A1)

where \(f_i\) and \(\varGamma _i\) are, respectively, the distribution function and the production rate for the i-th component.

For a relativistic quantum gas, the distribution function is [72]

$$\begin{aligned} f=\frac{1}{e^{-\varTheta +\beta E}+\epsilon }, \end{aligned}$$
(A2)

where \(\varTheta \) is the relativistic chemical potential, \(\beta = 1/T\), where T is the temperature, and \(\epsilon =\pm 1\) counts for different quantum statistics.

In the case of a relativistic bosonic gas with creation rate \(\varGamma _r\) (CMB radiation), by inserting () into () we obtain (see also [58]):

$$\begin{aligned} \frac{{\dot{\varTheta }}}{{\dot{\beta }}}=E\left[ 1- H \frac{\beta }{{\dot{\beta }}}\left( 1-\frac{\varGamma _r}{3H} \right) \right] , \end{aligned}$$
(A3)

which has the solution \({\dot{\varTheta }}=0\) and

$$\begin{aligned} \frac{\dot{T}_r}{T_r}=-\frac{\dot{a}}{a}+\frac{\varGamma _r}{3}, \end{aligned}$$
(A4)

where a is the scale factor and \(\varGamma _r\) stands for the radiation production rate. The above expression is the same as Eq. 15 which was deduced based on the thermodynamic approach. In the limit \(\frac{\varGamma _r}{3H}\ll 1\), Eqs.  and are reduced to the usual ones (see equations (3.70) and (3.71) in) [73].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, I.P.R., Jesus, J.F. & Lima, J.A.S. Testing creation cold dark matter cosmology with the radiation temperature–redshift relation. Gen Relativ Gravit 51, 33 (2019). https://doi.org/10.1007/s10714-019-2516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2516-3

Keywords

Navigation