Skip to main content
Log in

The quantum equivalence principle and the particle model in curved space-time

Квантовый принцип эквивалентности и модель частиц в искривленном пространстве-времени

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

A new formulation of the quantum equivalence principle is introduced. It gives rise to a particle model that behaves like the flat space-time particle, in Riemannian normal co-ordinates, it has an implementable Bogoliubov tranformation, and it can be considered as an exact model, while the previous one is only its first approximation.

Riassunto

Si introduce una nuova formulazione del principio di equivalenza quantica. Questo dà origine a un modello delle particelle che si comporta come la particella nello spaziotempo piatto in coordinate normali di Riemann, ha una trasformazione di Bogoliubov implementabile e può essere considerato un modello esatto, mentre il precedente era solo una prima approssimazione.

Резюме

Вводится новая формулировка квантового принципа эквивалентности. Эта формулировка приводит к модели частиц, которая ведет себя подобно модели частиц в плоском пространстве-времени, в нормальных координатах Римана. Эта модель допускает преобразование Боголюбова и может рассматриваться, как точная модель, тогда как предыдущая модель представляет только первое приближение.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lichnerowicz:Inst. Haut. Et. Sci. Publ. Math., No. 10 (1961), p. 293.

    MathSciNet  MATH  Google Scholar 

  2. A. Lichnerowicz:Ann. Inst. Henri Poincaré,3, 233 (1964).

    MathSciNet  Google Scholar 

  3. A. Lichnerowicz:Bull. Soc. Math. Fr.,92, 11 (1964).

    MathSciNet  MATH  Google Scholar 

  4. L. Parker:Phys. Rev.,183, 1057 (1969).

    Article  ADS  MATH  Google Scholar 

  5. L. Parker:Phys. Rev. D,3, 346 (1971).

    Article  ADS  Google Scholar 

  6. M. Castagnino: These d'Etat, Université de Paris, to be published byMathematicae Notae.

  7. M. Castagnino:Gen. Rel. Grav.,9, 101 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Castagnino, A. Verbeure andR. A. Weder:Nuovo Cimento,26, 396 (1975).

    Article  Google Scholar 

  9. S. G. Mamaev, W. M. Mostepanenko andA. A. Starobinskiî:Sov. Phys. JETP,43, 823 (1976).

    ADS  Google Scholar 

  10. S. Fulling:Gen. Rel. Grav.,10, 807 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. F. W. J. Olver:Proc. Cambridge Philos. Soc.,57, 790 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. F. W. J. Olver:Asymptotics and Special Functions (New York, N. Y., 1974).

  13. M. Castagnino andR. A. Weder:Quantum equivalence principle and finite particle creation in expanding universe, submitted toJ. Math. Phys. (N. Y.).

  14. J. A. Schoutten:Ricci Calculus (Berlin, 1954).

  15. J. L. Synge:Relativity: The General Theory (Amsterdam, 1964).

  16. N. A. Chernikov andE. A. Tagirov:Ann. Inst. Henri Poincaré A,9, 109 (1968).

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnino, M., Foussats, A., Laurá, R. et al. The quantum equivalence principle and the particle model in curved space-time. Nuov Cim A 60, 138–156 (1980). https://doi.org/10.1007/BF02902442

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02902442

Navigation