Skip to main content
Log in

Wheeler–DeWitt quantization for point-particles

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present the Hamiltonian formulation of a relativistic point-particle coupled to Einstein gravity and its canonical quantization à la Wheeler–DeWitt. In the resulting quantum theory, the wave functional is a function of the particle coordinates and the 3-metric. It satisfies a particular Hamiltonian and diffeomorphism constraint, together with a Klein–Gordon-type equation. As usual in the Wheeler–DeWitt theory, the wave function is time-independent. This is also reflected in the Klein–Gordon-type equation, where the time derivative is absent. Before considering gravity, we consider the coupling of a particle with electromagnetism, which is treated similarly, but simpler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Units are assumed such that \(\hbar =c=1\).

  2. We have chosen the Laplace-Beltrami operator ordering for the particle but not for gravity [19].

References

  1. Kiefer, C.: Quantum Gravity, International Series of Monographs on Physics 124. Clarendon Press, Oxford (2004)

    Google Scholar 

  2. Kuchar̆ K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992) (reprinted in Int. J. Mod. Phys. D 20, 3–86 (2011))

  3. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Pinto-Neto, N., Struyve, W.: Bohmian quantum gravity and cosmology. In: Oriols, X. and Mompart, J. (eds.) Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology, 2nd edn, pp. 607–656 (2019). arXiv:1801.03353 [gr-qc]

  5. Rovelli, C.: What is observable in classical and quantum gravity? Class. Quantum Grav. 8, 297–316 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Rovelli, C.: Quantum reference systems. Class. Quantum Grav. 8, 317–331 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pavšič, M.: Klein-Gordon-Wheeler-DeWitt-Schrödinger equation. Phys. Lett. B 703, 614–619 (2011). arXiv:1106.2017 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  8. Pavšič, M.: A novel approach to quantum gravity in the presence of matter without the problem of time. Int. J. Mod. Phys. A 35, 2050015 (2020). arXiv:1906.03987 [physics.gen-ph]

  9. Brown, J.D., Kuchař, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51, 5600 (1995). arXiv:gr-qc/9409001

    Article  ADS  MathSciNet  Google Scholar 

  10. Dirac, P.A.M.: Lectures On Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York (1964) (reprinted by Dover Publications, New York (2001))

  11. Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian Systems. Accademia Nazionale Dei Lincei, Roma (1976)

    Google Scholar 

  12. Sundermeyer, K.: Constrained Dynamics. Lecture Notes in Physics, vol. 169. Springer, Berlin (1982)

    MATH  Google Scholar 

  13. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints. Springer, Berlin (1990)

    Book  Google Scholar 

  14. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, New Jersey (1991)

    MATH  Google Scholar 

  15. Kemmer, N.: The particle aspect of meson theory. Proc. R. Soc. A 173, 91–116 (1939)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Struyve, W., De Baere, W., De Neve, J., De Weirdt, S.: On the uniqueness of paths for spin-0 and spin-1 quantum mechanics. Phys. Lett. A 322, 84–95 (2004). arXiv: quant-ph/0311098

    Article  ADS  MathSciNet  Google Scholar 

  17. Petrat, S., Tumulka, R.: Multi-time equations, classical and quantum. Proc. R. Soc. A 470, 20130632 (2014). arXiv:1309.1103 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  18. Carlip, S.: General Relativity. Oxford University Press, Oxford (2019)

    Book  Google Scholar 

  19. Christodoulakis, T., Zanelli, J.: Operator ordering in quantum mechanics and quantum gravity. Nuovo Cimento B 93, 1–21 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  20. Dirac, P.A.M., Fock, V.A., Podolsky, B.: On quantum electrodynamics. Phys. Z. Sowjetunion 2, 468–479 (1932)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Foundation Flanders (Fonds Wetenschappelijk Onderzoek, FWO), Grant No. G066918N. It is a pleasure to thank Christian Maes and Kasper Meerts for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward Struyve.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struyve, W. Wheeler–DeWitt quantization for point-particles. Gen Relativ Gravit 53, 32 (2021). https://doi.org/10.1007/s10714-021-02802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02802-6

Keywords

Navigation