Skip to main content
Log in

Study of dynamics in ternary fission by solving classical equations of motion

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

Within the three-centre model we have studied the dynamics of ternary fission for superheavy systems by solving the classical equations of motion with the potential energy surface given by the liquid-drop model (LDM) and the mass parameters and the viscosity tensor given by Werner-Wheeler method. The parametrization of nuclear shapes permits us to describe the sequence of configurations from the compound nucleus to three separated fragments. We have studied the effect of the initial conditions on the dynamical path of ternary fission and compared the trajectories of binary and ternary fission for the same initial condition. We have also studied the dependence of the mass of a third part between the two end fragments and the translational kinetic energy at the scission point onZ 2/A 1/3 of nuclei.

Riassunto

Nell'ambito del modello a 3 centri si è studiata la dinamica della fissione ternaria per sistemi superpesanti risolvendo le equazioni classiche di moto con l'energia potenziale di superficie data dal modello a goccia liquida (LDM) e i parametri di massa e il tensore di viscosità dato dal modello di Werner-Wheeler. La parametrizzazione delle forme nucleari permette di descrivere la sequenza di configurazioni dal nucleo composto a tre frammenti separati. Si è studiato l'effetto delle condizioni iniziali sul percorso dinamico della fissione ternaria e sono state confrontate le traiettorie della fissione binaria e ternaria per la stessa condizione iniziale. Si è anche studiata la dipendenza della massa di una terza parte tra i due seguenti terminali dell'energia cinetica traslazionale al punto di scissione suZ 2/A 1/3 del nucleo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Reinhardt andW. Greiner:Heavy Ion Atomic Physics, inHeavy Ion Science, Vol.3, edited byD. A. Bromley (New York, N. Y., 1982).

  2. I. Halpern:Alpha particle emission in fission, inPhysics and Chemistry of Fission, Vol.2 (Vienna, 1965), p. 369.

  3. J. Hahn, H. J. Lustig andW. Greiner:Z. Naturforsch., Teil A,32, 215 (1977).

    ADS  Google Scholar 

  4. A. R. Degheidy andJ. A. Maruhn:Z. Phys. A,290, 205 (1979).

    Article  ADS  Google Scholar 

  5. P. Fong:Phys. Rev. C,3, 2025 (1971).

    Article  ADS  Google Scholar 

  6. Y. Boneh, Z. Fraenkel andI. Nebenzahl:Phys. Rev.,156, 1305 (1967).

    Article  ADS  Google Scholar 

  7. G. M. Raisbeck andT. D. Thomas:Phys. Rev.,172, 1272 (1968).

    Article  ADS  Google Scholar 

  8. W. D. Diehl andW. Greiner:Nucl. Phys. A,229, 29 (1974).

    Article  ADS  Google Scholar 

  9. Xi-Zhen Wu, J. A. Maruhn andW. Greiner:J. Phys. G,10, 645 (1984).

    Article  ADS  Google Scholar 

  10. A. Maruhn andW. Greiner:Z. Phys.,251, 431 (1972).

    Article  ADS  Google Scholar 

  11. J. A. Maruhn, W. Greiner andW. Scheid:Theory of fragmentation in fission, fusion and heavy ion scattering, inHeavy Ion Collisions, Vol.2, edited byR. Bock (North-Holland Publ. Co., Amsterdam, 1980).

    Google Scholar 

  12. K. T. R. Davies, A. I. Sierk andJ. R. Nix:Phys. Rev., C 13, 2385 (1976).

    Article  ADS  Google Scholar 

  13. J. Schirmer, S. Knaak andG. Süssmann:Nucl. Phys. A,199, 31 (1973).

    Article  ADS  Google Scholar 

  14. R. Wieczorek, R. W. Hasse andG. Süssmann: inProceedings of the III International Atomic Energy Agency Symposium on the Physics and Chemistry of Fission, Vol.1 (Rochester, New York, N. Y., 1973), p. 523.

    Google Scholar 

  15. G. Wegmann:Phys. Lett. B,50, 327 (1974).

    Article  ADS  MATH  Google Scholar 

  16. D. H. E. Gross:Nucl. Phys. A,240, 472 (1975).

    Article  ADS  Google Scholar 

  17. W. J. Swiatecki: Lawrence Berkeley Laboratory Report No. LBL-4296 (1975).

  18. H. C. Pauli:Phys. Scr., A 10, 127 (1974).

    Article  ADS  Google Scholar 

  19. D. R. Inglis:Phys. Rev.,103, 1786 (1956).

    Article  ADS  Google Scholar 

  20. H. Goldstein:Classical Mechanics (Addison-Wesley, Reading, Mass., 1959), Chapt. 1, Sect. 5, p. 19.

    Google Scholar 

  21. D. Scharnweber, W. Greiner andU. Mosel:Nucl. Phys. A,164, 257 (1971).

    Article  ADS  Google Scholar 

  22. W. D. Myers andW. J. Swiatecki:Nucl. Phys.,81, 1 (1966).

    Article  Google Scholar 

  23. Xi-Zhen Wu, J. A. Maruhn andW. Greiner: to be published.

  24. J. R. Nix:Nucl. Phys. A,130, 241 (1969).

    Article  ADS  Google Scholar 

  25. A. Ralston andH. S. Wilf:Mathematical Methods for Digital Computers (Wiley, New York, N. Y., London, 1960), p. 95.

    MATH  Google Scholar 

  26. Xi-Zhen Wu, J. A. Maruhn andW. Greiner:J. Phys. G,10, L93 (1984).

    Article  ADS  Google Scholar 

  27. K. Depta et al.: GSI-Annual Report (1983).

  28. J. R. Nix andA. J. Sierk: preprint LA-UR-84-1566.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Bundesministerium für Forschung und Technologie (BMFT) and by the Gesellschaft für Schwerionenforschung (GSI).

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Xz., Depta, K., Herrmann, R. et al. Study of dynamics in ternary fission by solving classical equations of motion. Nuov Cim A 87, 309–323 (1985). https://doi.org/10.1007/BF02902224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02902224

PACS

Navigation