Skip to main content
Log in

Tumor infiltrating leukocytes (tils) during progressive tumor growth and BCG-mediated tumor regression

  • Published:
Virchows Archiv B

Summary

Tumor regression was induced by intralesional injection with BCG, 7 days after inoculation of line 10 hepatocellular carcinoma cells into strain 2 guinea pigs. Tumor-infiltrating leukocytes (TILS) were characterized immunohistochemically with 11 monoclonal antibodies (Mo Abs) during the induction phase of line 10-immunity, and during immune-mediated regression of the tumor, at days 12 and 28 after tumor cell inoculation, respectively.

At day 5 after BCG-injection (day 12 after tumor cell inoculation), there were no major differences between the TIL subpopulations of the BCG-treated and untreated tumors. The TILS were mainly T-cells, as identified by MoAbs against Pan T-cells (CT5), T-cyto-toxic/suppressor cells (CT6) and T-helper/inducer cells (HI 55). A limited number of macrophages was also present. However, at day 21 after BCG-treatment (28 days after tumor cell inoculation), the fibrous stroma was increased dramatically in most of the BCG-treated tumors, and as a result, the tumor cell islets were smaller than in control tumors. In the BCG treated tumors, the numbers of T-cells and macrophages were increased. In growing and regressing tumors, MHC class I and II antigens were strongly expressed in TILS and in the tumor stroma. Line 10 tumor cells prior to inoculation expressed no MHC class I or II antigens. In the centers of the tumor islets at days 12 and 28, expression of these antigens was not found. However, MHC class I and II antigens were expressed on tumor cells at sites where they lay close to the fibrous stroma or TILS. This observation was made in progressively growing tumors and was most apparent in BCG-treated tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker D, Karcher K, Antoniou AV, Turk JL, Tan BTG and Scheper RJ (1987) Changes in lymphocyte subsets after treatment with cyclophosphamide and during the development of contact sensitivity in the guinea pig. Int J Immunopharmacol 9:175–183

    Article  PubMed  CAS  Google Scholar 

  • Benacerraf B (1985) Significance and biological function of class II MHC molecules. Am J Pathol 120:334–343

    PubMed  CAS  Google Scholar 

  • Bhan AK, DesMarais CL (1983) Immunohistologic characterization of major histocompatibility antigens and inflammatory cellular infiltrate in human breast cancer. J Natl Cancer Inst 71:507–515

    PubMed  CAS  Google Scholar 

  • Borthwich GM, Hughes L, Holmes CH, Davis SJ, Stirrat GM (1988) Expression of class I and II major histocompatibility complex antigens in Wilms’ tumor and normal developing human kidney. Br J Cancer 58:753–761

    Google Scholar 

  • Bolhuis RLH, Van de Griend RJ, Stoter G, Mukherji B (1987) Lymphoid effector cells against tumor cells. In: Den Otter W, Ruitenberg EJ (eds) Tumor immunology mechanisms, diagnosis, therapy. Elsevier Science Publishers, Amsterdam, pp 61–88

    Google Scholar 

  • Brocker EB, Suter L, Brugger J, Ruiter DJ, Macher E, Sorg C (1985) Phenotypic dynamics of tumor progression in human malignant melanoma. Int J Cancer 36:29–35

    Article  PubMed  CAS  Google Scholar 

  • Burger R, Clement L, Schroer J, Chiba J, Shevach EM (1981) Monoclonal antibodies to guinea pig Ia antigens. I Production, serologic and immunochemical characterization. J Immunol 126:32–37

    PubMed  CAS  Google Scholar 

  • Burger R, Schäfer H (1988) Differentiation antigens on lymphoid cells of the guinea pig. In: M. Miyasaka and Z. Trnka (eds) Differentiation antigens in lymphohemopoietic tissues. Marcel Dekker, New York, p 249

    Google Scholar 

  • Burger R, Shevach EM (1980) Monoclonal antibodies to guinea pig Ia antigens. II Effect on alloantigens-, antigen-and mitogen-induced T lymphocyte proliferation in vitro. J Exp Med 152:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Burger R, Schrod L, Schäfer H (1986) Functionally relevant membrane proteins of human and guinea pig T lymphocytes. Mol Immunol 23:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Korman AJ, Wake CT, Boss JM, Kappes DJ, Fiers W, Ault KA, Gimbrone MA Jr, Strominger JL, Pober JS (1984) Immune interferon activates multiple class II major histocompatibility complex genes and associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 81:4917–4921

    Article  PubMed  CAS  Google Scholar 

  • Csiba A, Whitwell HL, Moore M (1984) Distribution of histocompatibility and leukocyte differentiation antigens in normal human colon and in benign and malignant colonie neoplasms. Br J Cancer 50:699–709

    PubMed  CAS  Google Scholar 

  • De Jong WH, Steerenberg PA, Van de Plas MMT, Kruizinga W, Ruitenberg EJ (1985) T cell involvement in adoptive transfer of line 10 tumor immunity in strain 2 guinea pigs. J Natl Cancer Inst 75:483–489

    PubMed  Google Scholar 

  • De Jong WH, Teppema JS, Wagenaar SJSc, Paques M, Steerenberg PA, Ruitenberg EJ (1986) Histological evaluations of immunologically mediated tumor regression of the line 10 guinea pig hepatocarcinoma. Virchows Arch [B] 50:249–269

    Google Scholar 

  • De Jong WH, Steerenberg PA, Kreeftenberg JC, Tiesjema RH, Kruizinga W, Van Noorle Jansen LM, Ruitenberg EJ (1984) Experimental screening of BCG preparations produced for cancer immunotherapy: safety and immunostimulating and antitumor activity of four consecutively produced batches. Cancer Immunol Immunother 17:18–27

    Article  PubMed  Google Scholar 

  • Den Otter W (1987) Evaluation of knowledge of in vivo tumoricidal effector mechanisms. In: Den Otter W, Ruitenberg EJ (eds) Tumor immunology - mechanisms, diagnosis, therapy. Elsevier Science Publishers, Amsterdam, pp 109–123

    Google Scholar 

  • De Weger RA (1987) The initiation of immune reactions to tumour cells. In: Den Otter W, Ruitenberg EJ (eds) Tumor immunology - mechanisms, diagnosis, therapy. Elsevier Science Publishers, Amsterdam, pp 44–60

    Google Scholar 

  • Doyle A, Marktin WJ, Funda K, Gazdar A, Garney D, Matin SE, Linnoila I, Cuttitta F, Mulshine J, Bunn P, Minna J (1985) Markedly decreased expression of class I histocompatibility antigens, protein and mRNA in human small-cell long cancer. J Exp Med 161:1135–1151

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF, Dvorak AM, Churchill WH (1973) Immunologic rejection of diethylnitrosamine-induced hepatomas in strain 2 guinea pigs. Participation of basophilic leukocytes and macrophage aggregates. J Exp Med 137:751–775

    Article  PubMed  CAS  Google Scholar 

  • Ferguson A, Moore M, Fox H (1985) Expression of MHC products and leukocyte differentation antigens in gynaecological neoplasms. An immunohistological analysis of the tumour cells and infiltrating leukocytes. Br J Cancer 52:551–563

    PubMed  CAS  Google Scholar 

  • Hamilton TA, Adams DO (1987) Mechanisms of macrophage - mediated tumor injury. In: Den Otter W, Ruitenberg EJ (eds) Tumor immunology - mechanisms, diagnosis, therapy. Elsevier Science Publishers, Amsterdam, pp 89–107

    Google Scholar 

  • Hanna MG Jr, Snodgrass MJ, Zbar B, Rapp HJ (1972 a) Histology of Mycobacterium bovis (BCG)-mediated tumor regression. Natl Cancer Inst Monogr 35:345–357

    PubMed  Google Scholar 

  • Hanna MG Jr, Zbar B, Rapp HJ (1972b) Histopathology of tumor regression after intralesional injection of Mycobacterium bovis. I. Tumor growth and metastasis. J Natl Cancer Inst 48:1441–1455

    PubMed  Google Scholar 

  • Hanna MG Jr, Zbar B, Rapp HJ (1972c) Histopathology of tumor regression after intralesional injection of Mycobacterium bovis. II. Comparative effects of vaccinia virus, oxazolone and turpentine. J Natl Cancer Inst 48:1697–1707

    PubMed  CAS  Google Scholar 

  • Hanna MG Jr, Snodgrass MJ, Zbar B, Rapp HJ (1973) Histopathology of tumor regression after intralesional injection of Mycobacterium bovis: IV. Development of immunity to tumor cells and BCG. J Natl Cancer Inst 51:1897–1908

    PubMed  Google Scholar 

  • Healey DG, Agha N, Turk JL (1988) Behaviour of guinea pig T-cells stimulated by antigen, allo-antigen, and mitogen. Int Arch Allergy Appl Immunol 87:134–142

    PubMed  CAS  Google Scholar 

  • Heinemann D, Smith PJB, Symes MO (1987) Expression of histocompatibility antigens and characterization of mononuclear cell infiltrates in human renal cell carcinomas. Br J Cancer 56:433–437

    PubMed  CAS  Google Scholar 

  • Ibayashi Y, Uede T, Uede T, Kikuchi K (1984) Functional analysis of mononuclear cells infiltrating into tumors: Differential cytotoxicity of mononuclear cells from tumors of immune and non immune rats. J Immunol 134:648–653

    Google Scholar 

  • Kraal G, Shiamatey-Koolma R, Hoffer M, Bakker D, Scheper R (1988) Histochemical indentification of guinea pig macrophages by monoclonal antibody MR-1. Immunology 65:523–528

    PubMed  CAS  Google Scholar 

  • McPhee CA, Milton JI, Thomson AW (1988) Flow cytometric analysis of lymphocyte populations in guinea pig blood and spleen Ia antigen-expression and the effects of immunosuppressive agents. Int Arch Allergy Appl Immunol 87:275–280

    PubMed  CAS  Google Scholar 

  • Poels LG, Jap PHK, Niekerk CV, Willemen A, Chand A, Staal HJ, De Jong WH, Steerenberg PA (1984) Common and specific antigens on two tumor cell lines. Prot Biol Fluids 31:579–582

    Google Scholar 

  • Rapp HJ, Churchill WH, Kromman BS, Rolley RT, Borsos T (1968) Antigenicity of a new diethylnitrosamine induced transplantable guinea pig hepatoma: pathology and formation of ascites variant. J Natl Cancer Inst 41:1–11

    PubMed  CAS  Google Scholar 

  • Rock KL, Benacerraf B (1983) MHC-restricted T cell activation: analysis with T cell hybridomas. Immunol Rev 76:29–57

    Article  PubMed  CAS  Google Scholar 

  • Rowe DJ, Isenberg DA, McDougall J, Beverley PCL (1981) Characterization of polymyositis infiltrates using monoclonal antibodies to human leukocyte antigens. Clin Exp Immunol 45:290–298

    PubMed  CAS  Google Scholar 

  • Saito T, Tanaka R, Yoshida S, Washiyama K, Kumanishi T (1988) Immunohistochemical analysis of tumor-infiltrating lymphocytes and major histocompatibility antigens in human gliomas and metastatic brain tumors. Surg Neurol 29:435–442

    Article  PubMed  CAS  Google Scholar 

  • Schäfer H, Müller B, Bader A, Schenkel J, R. Burger (1989) Analysis of guinea pig leukocyte antigens using interspecies T cell hybrids. J Immunol Meth 118:169–177

    Article  Google Scholar 

  • Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, Van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305:771–775

    Article  PubMed  CAS  Google Scholar 

  • Schwartz R, Momburg F, Moldenhauer G, Dorken B, Schirrmacher V (1985) Induction of HLA class II antigen expression on human carcinoma cell lines by IFN-gamma. Int J Cancer 35:245–250

    Article  PubMed  CAS  Google Scholar 

  • Shu S, Steerenberg PA, Hunter JT, Evans ChH, Rapp HJ (1981) Adoptive immunity to the guinea pig line 10 hepatoma and the nature of in vitro lymphoid tumor cell interaction. Cancer Res 41:3499–3506

    PubMed  CAS  Google Scholar 

  • Snodgrass MG, Hanna MG Jr (1973) Ultrastructural studies of histiocyte-tumor cell interactions during tumor regression after intralesional injection of Mycobacterium bovis. Cancer Res 33:701–716

    PubMed  CAS  Google Scholar 

  • Smith HG, Harmel RP, Hanna MG Jr, Zwilling BS, Zbar B, Rapp HJ (1977) Regression of established intradermal tumors and lymph node metatases in guinea pigs after systemic transfer of immune lymphoid cells. J Natl Cancer Inst 58:1315–1322

    PubMed  CAS  Google Scholar 

  • Tan BTG, Ekelaar F, Luirink J, Rimmelzwaan G, De Jonge AJR, Scheper RJ (1985) Production of monoclonal antibodies defining guinea pig T cell surface markers and a strain 13 Ia-like antigen: The value of immunohistological screening. Hybridoma 4:115–124

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Isselbacher KJ, Khoury G, Jay G (1985) Reversal of oncogenesis by the expression of a major histocompatibility complex class I gene. Science 228:26–30

    Article  PubMed  CAS  Google Scholar 

  • Taramelli D, Fossati G, Mazzocchi A, Delia D, Ferrone S, Parmiani G (1986) Classes I and II HLA and melanoma-associated antigen expression and modulation on melanoma cells isolated from primary and metastatic lesions. Cancer Res 46:433–439

    PubMed  CAS  Google Scholar 

  • Thorsly E, Berle E, Nousiainen H (1982) HLA-D region molecules restrict proliferative T-cell responses to antigens. Immunological Rev 66:41–56

    Google Scholar 

  • Van de Molengraft F, Poels LG, Niekert CV, Van Mungyer G, Steerenberg PA, Jap PHK (1989) Changing tumor antigen expression in metastatic hepatocellular carcinoma cells of the guinea pig. Virchows Arch [B] 56:211–219

    Google Scholar 

  • Vánky F, Stuber G, Rotstein S, Klein E (1989) Auto-tumor recognition following in vitro induction of MHC antigen expression on solid human tumors: stimulation of lymphocytes and generation of cytotoxicity against the original MHC-antigen-negative tumor cells. Cancer Immunol Immunother 28:17–21

    Article  PubMed  Google Scholar 

  • Whitwell HL, Hughes HPA, Moore M, Ahmed A (1984) Expression of major histocompatibility antigens and leukocyte infiltration in benign and malignant human breast disease. Br J Cancer 49:161–172

    PubMed  CAS  Google Scholar 

  • Wong GHW, Clark-Lewis I, Harris AW, Schrader JW (1984) Effect of cloned interferon-γ on expression of H-2 and Ia antigens on cell lines of hemopoietic, lymphoid, epithelial, fibroblastic and neuronal origin. Eur J Immunol 14:52–56

    Article  PubMed  CAS  Google Scholar 

  • Young JDE, Liu CC, Persechini PM, Cohn ZA (1988) Perforindependent and independent pathways of cytotoxicity mediated by lymphocytes. Immunol Rev 103:161–202

    Article  PubMed  CAS  Google Scholar 

  • Zaloudik J, Moore M, Ghosh AK, Mechl Z, Regthar A (1988) DNA content and MHC class II antigen expression in malignant melanomas: clinical course. J Clin Pathol 41:1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Zbar B, Bernstein ID, Rapp HJ (1971) Suppression of tumor growth at the site of infection with living Bacillus Calmette-Guérin. J Natl Cancer Inst 46:831–839

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steerenberg, P.A., De Jong, W.H., Elgersma, A. et al. Tumor infiltrating leukocytes (tils) during progressive tumor growth and BCG-mediated tumor regression. Virchows Archiv B Cell Pathol 59, 185–194 (1990). https://doi.org/10.1007/BF02899404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899404

Keywords

Navigation