Skip to main content
Log in

Metallothioneins and brain injury: What transgenic mice tell us

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

In rodents, the metallothionein (MT) family is composed of four members, MT-1 to MT-4. MT-1&2 are expressed in virtually all tissues including those of the Central Nervous System (CNS), while MT-3 (also called Growth Inhibitory Factor) and MT-4 are expressed prominently in the brain and in keratinizing epithelia, respectively. For the understanding of the physiological functions of these proteins in the brain, the use of transgenic mice has provided essential information. Results obtained inMT-1&2-null mice and in MT-1-overexpressing mice strongly suggeset that these MT isoforms are important antioxidant, anti-inflammatory and antiapoptotic proteins in the brain. Results inMT-3-null mice show a very different pattern, with no support for MT-1&2-like functions. Rather, MT-3 could be involved in neuronal sprouting and survival. Results obtained in a model of peripheral nervous system injury also suggest that MT-3 could be involved in the control of nerve growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J. Amer. Chem. Soc. 1957; 79: 4813–4814.

    CAS  Google Scholar 

  2. Kägi JHR, Vallee BL. Metallothionein: a cadmium-and zinccontaining protein from equine renal cortex. J. Biol. Chem. 1960; 235: 3460–3465.

    PubMed  Google Scholar 

  3. Kägi JHR, Valle BL. Metallothionein: a cadmium-and zinccontaining protein from equine renal cortex. II. Physicochemical properties. J. Biol. Chem. 1961; 236: 2435–2442.

    PubMed  Google Scholar 

  4. Hamer DH. Metallothionein. Annu. Rev. Biochem. 1986; 55: 913–951.

    PubMed  CAS  Google Scholar 

  5. Bremner I. Interactions between metallothionein and trace elements. Prog. Food Nutr. Sci. 1987; 11: 1–37.

    PubMed  CAS  Google Scholar 

  6. Vašák M, Hasler DW. Metallothioneins: new functional and structural insights. Current Opinion Chem. Biol. 2000; 4: 177–183.

    Google Scholar 

  7. Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 2000; 59: 95–104.

    PubMed  CAS  Google Scholar 

  8. Ghoshal K, Jacob ST. Regulation of metallothionein gene expression. Prog. Nucleic. Acid. Res. Mol. Biol. 2001; 66: 357–384.

    PubMed  CAS  Google Scholar 

  9. Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell. Mol. Life Sci. 2002; 59: 627–647.

    PubMed  CAS  Google Scholar 

  10. Binz P-A, Kägi JHR (1999). Metallothionein: Molecular evolution and classification. In: Metallothionein IV (ed. CD Klaassen), pp 7–13. Birkhäuser Verlag, Basel.

    Google Scholar 

  11. Palmiter RD, Findley SD, Whitmore TE, Durnam DM. MT-III, a brain-specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. USA 1992; 89: 6333–6337.

    PubMed  CAS  Google Scholar 

  12. Quaife CJ, Findley SD, Erickson JC, et al. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 1994; 33: 7250–7259.

    PubMed  CAS  Google Scholar 

  13. West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI. Human metallothionein genes: structure of the functional locus at 16q13. Genomics 1990; 8: 513–518.

    PubMed  CAS  Google Scholar 

  14. Samson SL, Gedamu L. Molecular analyses of metallothionein gene regulation. Prog. Nucleic Acid Res. Mol. Biol. 1998; 59: 257–288.

    PubMed  CAS  Google Scholar 

  15. Searle PF, Davison BL, Stuart GW, Wilkie TM, Norstedt G, Palmiter RD. Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol. Cell. Biol., 1984; 4: 1221–1230.

    PubMed  CAS  Google Scholar 

  16. Yagle MK, Palmiter RD. Coordinate regulation of mouse metallothionein I and II genes by heavy metals and glucocorticoids. Mol. Cell. Biol. 1985; 5: 291–294.

    PubMed  CAS  Google Scholar 

  17. van Lookeren Campagne M, Thiobodeaux H, van Bruggen N, Cairns B, Lowe DG. Increased binding activity at an antioxidant-responsive element in the metallothionein-1 promoter and rapid induction of metallothionein-1 and-2 in response to cerebral ischemia and reperfusion. J. Neurosci. 2000; 20: 5200–5207.

    Google Scholar 

  18. Durnam DM, Palmiter RD. Transcriptional regulation of the mouse metallothionein-1 gene by heavy metals. J. Biol. Chem. 1981; 256: 5712–5716.

    PubMed  CAS  Google Scholar 

  19. Blaauwgeers HG, Sillevis Smitt PA, De Jong JM, Troost D. Distribution of metallothionein in the human central nervous system. Glia 1993; 8: 62–70.

    PubMed  CAS  Google Scholar 

  20. Gulati S, Paliwal VK, Sharma M, Gill KD, Nath R. Isolation and characterization of a metallothionein-like protein from monkey brain. Toxicology 1987; 45: 53–64.

    PubMed  CAS  Google Scholar 

  21. Kojima S, Shimada A, Morita T, Yamano Y, Umemura T. Localization of metallothioneins-1 &-II and-III in the brain of aged dog. J. Vet. Med. Sci. 1999; 61: 343–349.

    PubMed  CAS  Google Scholar 

  22. Holloway AF, Stennard FA, Dziegielewska KM, Weller L, West AK. Localization and expression of metallothionein immunoreactivity in the developing sheep brain. Int. J. Dev. Neurosci. 1997; 15: 195–203.

    PubMed  CAS  Google Scholar 

  23. Hanlon J, Monks E, Hughes C, Weavers E, Rogers M. Metallothionein in bovine spongiform encephalopathy. J. Comp. Pathol. 2002; 127: 280–289.

    PubMed  CAS  Google Scholar 

  24. Itano Y, Noji S, Koyama E, et al. Bacterial endotoxin-induced expression of metallothionein genes in rat brain, as revealed by in situ hybridization. Neurosci. Lett. 1991; 124: 13–16.

    PubMed  CAS  Google Scholar 

  25. Hao R, Cerutis DR, Blaxall HS, Rodriguez-Sierra JF, Pfeiffer RF, Ebadi M. Distribution of zinc metallothionein 1 mRNA in rat brain using in situ hybridization. Neurochem. Res. 1994; 19: 761–767.

    PubMed  CAS  Google Scholar 

  26. Masters BA, Quaife CJ, Erickson JC, et al. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci 1994; 14: 5844–5857.

    PubMed  CAS  Google Scholar 

  27. Carrasco J, Hernández J, González B, Campbell IL, Hidalgo J. Localization of metallothionein-I and-III expression in the CNS of transgenic mice with astrocyte-targeted expression of interleukin 6. Exp. Neurol. 1998; 153: 184–194.

    PubMed  CAS  Google Scholar 

  28. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I-and II-deficient mice. J. Neurosci. 1999; 19: 2535–2545.

    PubMed  CAS  Google Scholar 

  29. Young JK, Garvey JS, Huang PC. Glial immunoreactivity for metallothionein in the rat brain. Glia 1991; 4: 602–610.

    PubMed  CAS  Google Scholar 

  30. Suzuki K, Nakajima K, Otaki N, Kimura M. Metallothionein in developing human brain. Biol. Signals 1994; 3: 188–192.

    CAS  Google Scholar 

  31. Young JK. Glial metallothionein. Biol. Signals 1994; 3: 169–175.

    PubMed  CAS  Google Scholar 

  32. Penkowa M, Moos T. Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes. Glia 1995; 13: 217–227.

    PubMed  CAS  Google Scholar 

  33. Nakajima K, Suzuki K. Immunochemical detection of metallothionein in brain. Neurochem. Int. 1995; 27: 73–87.

    PubMed  CAS  Google Scholar 

  34. Shimada A, Yanagida M, Umemura T. An immunohistochemical study on the tissue-specific localization of metallothionein in dogs. J. Comp. Pathol. 1997; 116: 1–11.

    PubMed  CAS  Google Scholar 

  35. Kawashima T, Adachi T, Tokunaga Y, et al. Immunohistochemical analysis in a case of idiopathic Lennox-Gastaut syndrome. Clin. Neuropathol. 1999; 18: 286–292.

    PubMed  CAS  Google Scholar 

  36. Carrasco J, Giralt M, Penkowa M, Stalder AK, Campbell IL, Hidalgo J. Metallothioneins are upregulated in symptomatic mice with astrocyte-targeted expression of tumor necrosis factor-α. Exp. Neurol. 2000; 163: 46–54.

    PubMed  CAS  Google Scholar 

  37. Acarin L, González B, Hidalgo J, Castro AJ, Castellano B. Primary cortical glial reaction versus secondary thalamic glial response in the excitotoxically injured young brain:astroglial response and metallothionein expression. Neuroscience 1999; 92: 827–839.

    PubMed  CAS  Google Scholar 

  38. Nagano S, Satoh M, Sumi H, et al. Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose-dependent manner. Eur. J. Neurosci. 2001; 13: 1363–1370.

    PubMed  CAS  Google Scholar 

  39. Hidalgo J, Aschner M, Zatta P, Vašák M. Roles of the metallothionein family of proteins in the central nervous system. Brain. Res. Bull. 2001; 55: 133–145.

    PubMed  CAS  Google Scholar 

  40. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 1991; 7: 337–347.

    PubMed  CAS  Google Scholar 

  41. Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T. Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer’s disease. Embo J. 1992; 11: 4843–4850.

    PubMed  CAS  Google Scholar 

  42. Kobayashi H, Uchida Y, Ihara Y, et al. Molecular cloning of rat growth inhibitory factor cDNA and the expression in the central nervous system. Mol. Brain Res. 1993; 19: 188–194.

    PubMed  CAS  Google Scholar 

  43. Hoey JG, Garrett SH, Sens MA, Todd JH, Sens DA. Expression of MT-3 mRNA in human kidney, proximal tubule cell cultures, and renal cell carcinoma. Toxicol. Lett. 1997; 92: 149–160.

    PubMed  CAS  Google Scholar 

  44. Moffatt P, Séguin C. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol. 1998; 17: 501–510.

    PubMed  CAS  Google Scholar 

  45. Garrett SH, Sens MA, Todd JH, Somji S, Sens DA. Expression of MT-3 protein in the human kidney. Toxicol. Lett. 1999; 105: 207–214.

    PubMed  CAS  Google Scholar 

  46. Garrett SH, Sens MA, Shukla D, et al. Metallothionein isoform 3 expression in the human prostate and cancer-derived cell lines. Prostate 1999; 41: 196–202.

    PubMed  CAS  Google Scholar 

  47. Sens MA, Somji S, Garrett SH, Beall CL, Sens DA. Metallothionein isoform 3 overexpression is associated with breast cancers having a poor prognosis. Am. J. Pathol. 2001; 159: 21–26.

    PubMed  CAS  Google Scholar 

  48. Cyr DG, Dufresne J, Pillet S, Alfieri TJ, Hermo L. Expression and regulation of metallothioneins in the rat epididymis. J. Androl. 2001; 22: 124–135.

    PubMed  CAS  Google Scholar 

  49. Yamashita M, Glasgow E, Zhang BJ, Kusano K, Gainer H. Identification of cell-specific messenger ribonucleic acids in oxytocinergic and vasopressinergic magnocellular neurons in rat supraoptic nucleus by single-cell differential hybridization. Endocrinology 2002; 143: 4464–4476.

    PubMed  CAS  Google Scholar 

  50. Pountney DL, Fundel SM, Faller P, Birchler NE, Hunziker P, Vasak M. Isolation, primary structures and metal binding properties of neuronal growth inhibitory factor (GIF) from bovine and equine brain. FEBS Lett. 1994; 345: 193–197.

    PubMed  CAS  Google Scholar 

  51. Dalton T, Pazdernik TL, Wagner J, Samson F, Andrews GK. Temporalspatial patterns of expression of metallothionein-I and-III and other stress related genes in rat brain after kainic acid-induced seizures. Neurochem. Int. 1995; 27: 59–71.

    PubMed  CAS  Google Scholar 

  52. Chen CF, Wang SH, Lin LY. Identification and characterization of metallothionein III (growth inhibitory factor) from porcine brain. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996; 115: 27–32.

    PubMed  CAS  Google Scholar 

  53. Kojima S, Shimada A, Kodan A, et al. Molecular cloning and expression of the canine metallothionein-III gene. Can. J. Vet. Res. 1998; 62: 148–151.

    PubMed  CAS  Google Scholar 

  54. Chung RS, Holloway AF, Eckhardt BL, et al. Sheep have an unusual variant of the brain-specific metallothionein, metallothionein-III. Biochem. J. 2002; 365: 323–328.

    PubMed  CAS  Google Scholar 

  55. Uchida Y. Growth inhibitory factor in brain. In: Metallothionein III (eds. Kt Suzuki N Imura, M Kimura), pp 315–328. Birkhäuser Verlag, Basel, 1993.

    Google Scholar 

  56. Anezaki T, Ishiguro H, Hozumi I, et al. Expression of growth inhibitory factor (GIF) in normal and injured rat brains. Neurochem. Int. 1995; 27: 89–94.

    PubMed  CAS  Google Scholar 

  57. Yuguchi T, Kohmura E, Yamada K, et al. Expression of growth inhibitory factor mRNA following cortical injury. J. Neurotrauma 1995; 12: 299–306.

    PubMed  CAS  Google Scholar 

  58. Yuguchi T, Kohmura E, Yamada K, et al. Changes in growth inhibitory factor mRNA expression compared with those in cjun mRNA expression following facial nerve transection. Mol. Brain Res. 1995; 28: 181–185.

    PubMed  CAS  Google Scholar 

  59. Zheng H, Berman NE, Klaassen CD. Chemical modulation of metallothionein I and III mRNA in mouse brain. Neurochem. Int. 1995; 27: 43–58.

    PubMed  CAS  Google Scholar 

  60. Choudhuri S, Kramer KK, Berman NE, Dalton TP, Andrews GK, Klaassen CD. Constitutive expression of metallothionein genes in mouse brain. Toxicol. Appl. Pharmacol. 1995; 131: 144–154.

    PubMed  CAS  Google Scholar 

  61. Yuguchi T, Kohmura E, Sakaki T, et al. Expression of growth inhibitory factor mRNA after focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 1997; 17: 745–752.

    PubMed  CAS  Google Scholar 

  62. Carrasco J, Hernández J, Bluethmann H, Hidalgo J. Interleukin-6 and tumor necrosis factor-alpha type 1 receptor deficient mice reveal a role of IL-6 and TNF-alpha on brain metallothionein-I and-III regulation. Mol. Brain Res. 1998; 57: 221–234.

    PubMed  CAS  Google Scholar 

  63. Kojima S, Shimada A, Morita T, Yamano Y, Umemura T, Localization of metallothioneins-I &-II and-III in the brain of aged dog. J. Vet. Med. Sci. 1999; 61: 343–349.

    PubMed  CAS  Google Scholar 

  64. Velázquez RA, Cai Y, Shi Q, Larson AA. The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. J. Neurosci. 1999; 19: 2288–2300.

    PubMed  Google Scholar 

  65. Acarin L, Carrasco J, González B, Hidalgo J, Castellano B. Expression of growth inhibitory factor (metallothionein-III) mRNA and protein following excitotoxic immature brain injury. J. Neuropathol. Exp. Neurol. 1999; 58: 389–397.

    PubMed  CAS  Google Scholar 

  66. Penkowa M, Moos T, Carrasco J, et al. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. Glia 1999; 25: 343–357.

    PubMed  CAS  Google Scholar 

  67. Gong YH, Elliott JL. Metallothionein expression is altered in a transgenic murine model of familial amyotrophic latyeral sclerosis. Exp. Neurol. 2000; 162: 27–36.

    PubMed  CAS  Google Scholar 

  68. Kim D, Kim EH, Kim C, et al. Differential regulation of metallothionein-I, II, and III mRNA expression in the rat brain following kainic acid treatment. Neuroreport 2003; 14: 679–682.

    PubMed  CAS  Google Scholar 

  69. Yamada M, Hayashi S, Hozumi I, Inuzuka T, Tsuji S, Takahashi H. Subcellular localization of growth inhibitory factor in rat brain: light and electron microscopic immunohistochemical studies. Brain Res. 1996; 735: 257–264.

    PubMed  CAS  Google Scholar 

  70. Hozumi I, Inuzuka T, Ishiguro H, Hiraiwa M, Uchida Y, Tsuji S. Immunoreactivity of growth inhibitory factor in normal rat brain and after stab wounds—an immunocytochemical study using confocal laser scan microscope. Brain Res. 1996; 741: 197–204.

    PubMed  CAS  Google Scholar 

  71. Carrasco J, Giralt M, Molinero A, Penkowa M, Moos T, Hidalgo J. Metallothionein (MT)-III: generation of polyclonal antibodies, comparison with MT-I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer’s disease brains. J. Neurotrauma. 1999; 16: 1115–1129.

    PubMed  CAS  Google Scholar 

  72. Kawashima T, Doh-ura K, Torisu M, Uchida Y, Furuta A, Iwaki T. Differential expression of metallothioneins in human prion diseases. Dement. Geriatr. Cogn. Disord. 2000; 11: 251–262.

    PubMed  CAS  Google Scholar 

  73. Isumi H, Uchida Y, Hayashi T, Furukawa S, Takashima S. Neuron death and glial response in pontosubicular necorsis. The role of the growth inhibition factor. Clin. Neuropathol. 2000; 19: 77–84.

    PubMed  CAS  Google Scholar 

  74. Penkowa M, Giralt M, Thomsen P, Carrasco J, Hidalgo J. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes. J. Neurotrauma 2001; 18: 447–463.

    PubMed  CAS  Google Scholar 

  75. Yanagitani S, Miyazaki H, Nakahashi Y, et al. Ischemia induces metallothionein III expression in neurons of rat brain. Life Sci. 1999; 64: 707–715.

    PubMed  CAS  Google Scholar 

  76. Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE. Metallothionein III is reduced in Alzheimer’s disease. Brain Res. 2001; 894: 37–45.

    PubMed  CAS  Google Scholar 

  77. Lee JY, Kim JH, Palmiter RD, Koh JY. Zinc released from metallothionein-III may contribute to hippocampal CAI and thalamic neuronal death following acute brain injury. Exp. Neurol. 2003; 184: 337–347.

    PubMed  CAS  Google Scholar 

  78. Miyazaki I, Asanuma M, Higashi Y, Sogawa CA, Tanaka K, Ogawa N. Age-related changes in expression of metallothioneinill in rat brain. Neurosci. Res. 2002; 43: 323–333.

    PubMed  CAS  Google Scholar 

  79. Duguid JR, Bohmont CW, Liu NG, Tourtellotte WW. Changes in brain gene expression shared by scrapie and Alzheimer disease. Proc. Natl. Acad. Sci. USA 1989; 86: 7260–7264.

    PubMed  CAS  Google Scholar 

  80. Zambenedetti P, Giordano R, Zatta P. Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer’s disease. J. Chem. Neuroanat. 1998; 15: 21–26.

    PubMed  CAS  Google Scholar 

  81. Adlard PA, West AK, Vickers JC. Increased density of metallothionein I/II-immunopositive cortical glial cells in the early stages of Alzheimer’s disease. Neurobiol. Dis. 1998; 5: 349–356.

    PubMed  CAS  Google Scholar 

  82. Chuah MI, Getchell ML. Metallothionein in olfactory mucosa of Alzheimer’s disease patients and apoE-deficient mice. Neuroreport 1999; 10: 1919–1924.

    PubMed  CAS  Google Scholar 

  83. Sillevis Smitt PA, Blaauwggers HG, Troost D, de Jong JM. Metallothionein immunoreactivity is increased in the spinal cord of patients with amyotrophic lateral selerosis. Neurosci. Lett. 1992; 144: 107–110.

    PubMed  CAS  Google Scholar 

  84. Sillevis Smitt PA, Mulder TP, Verspaget HW, Blaauwgeers HG, Troost D, de Jong JM. Metallothionein in amyotrophic lateral sclerosis. Biol. Signals 1994; 3: 193–197.

    PubMed  CAS  Google Scholar 

  85. Blaauwgeers HG, Anwar Chand M, van den Berg FM, Vianney de Jong JM, Troost, D. Expression of different metallothionein messenger ribonucleic acids in motor cortex, spinal cord and liver from patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 1996; 142: 39–44.

    PubMed  CAS  Google Scholar 

  86. Lock C, Hermans G, Pedotti R, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 2002; 8: 500–508.

    PubMed  CAS  Google Scholar 

  87. Penkowa M, Espejo C, Ortega-Aznar A, Hidalgo J, Montalban X, Martinez-Cáceres EM. Metallothionein expression in the central nervous system of multiple sclerosis patients. Cell. Mol. Life Sci. 2003; 60: 1258–1266.

    Article  PubMed  CAS  Google Scholar 

  88. De SK, McMaster MT, Andres GK. Endotoxin induction of murine metallothionein gene expression. J. Biol. Chem. 1990; 265: 15267–15274.

    PubMed  CAS  Google Scholar 

  89. Hidalgo J, Borras M, Garvey JS, Armario A. Liver, brain, and heart metallothionein induction by stress. J. Neurochem. 1990; 55: 651–654.

    PubMed  CAS  Google Scholar 

  90. Gasull T, Giralt M, Garcia A, Hidalgo J. Regulation of metallothionein-I+II levels in specific brain areas and liver in the rat: role of catecholamines. Glia 1994; 12: 135–143.

    PubMed  CAS  Google Scholar 

  91. Jacob ST, Ghoshal K, Sheridan JE. Induction of metallothionein by stress and its molecular mechanisms. Gene Expr. 1999; 7: 301–310.

    PubMed  CAS  Google Scholar 

  92. Hidalgo J, Castellano B, Campbell IL. Regulation of brain metallothioneins. Current Topics Neurochem. 1997; 1: 1–26.

    CAS  Google Scholar 

  93. Montpied P, de Bock F, Baldy Moulinier M, Rondouin G. Alterations of metallothionein II and apolipoprotein J mRNA levels in kainate-treated rat. Neuroreport 1998; 9: 79–83.

    PubMed  CAS  Google Scholar 

  94. Carrasco J, Penkowa M, Hadberg H, Molinero A, Hidalgo J. Enhanced seizures and hippocampal neurodegeneration following kainic acid induced seizures in metallothionein-I+II deficient mice. Eur. J. Neurosci. 2000; 12: 2311–2322.

    PubMed  CAS  Google Scholar 

  95. Tang Y, Lu A, Aronow BJ, Wagner KR, Sharp FR. Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur. J. Neurosci. 2002; 15: 1937–1952.

    PubMed  Google Scholar 

  96. Neal JW, Singhrao SK, Jasani B, Newman GR. Immunocytochemically detectable metallothionein is expressed by astrocytes in the ischaemic human brain. Neuropathol. Appl. Neurobiol. 1996; 22: 243–247.

    PubMed  CAS  Google Scholar 

  97. van Lookeren Campagne M, Thibodeaux H, van Bruggen N, et al. Evidence for a protective role of metallothionein-1 in focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 1999; 96: 12870–12875.

    PubMed  Google Scholar 

  98. Trendelenburg G, Prass K, Priller J, et al. Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 2002; 22: 5879–5888.

    PubMed  CAS  Google Scholar 

  99. Fukada K, Nagano S, Satoh M, et al. Stabilization of mutant Cu/Zn superoxide dismutase (SOD1) protein by coexpressed wild SOD1 protein accelerates the disease progression in familial amyotrophic lateral sclerosis mice. Eur. J. Neurosci. 2001; 14: 2032–2036.

    PubMed  CAS  Google Scholar 

  100. Puttaparthi K, Gitomer WL, Krishnan U, Son M, Rajendran B, Elliott JL. Disease progression in a transgenic model of familial amyotrophic lateral sclerosis is dependent on both neuronal and non-neuronal zinc binding proteins. J. Neurosci. 2002; 22: 8790–8796.

    PubMed  CAS  Google Scholar 

  101. Penkowa M, Hidalgo J. Metallothionein I+II expression and their role in experimental autoimmune encephalomyelitis. Glia 2000; 32: 247–263.

    PubMed  CAS  Google Scholar 

  102. Espejo C, Carrasco J, Hidalgo J, et al. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis. Neuroscience 2001; 105: 1055–1065.

    PubMed  CAS  Google Scholar 

  103. Penkowa M, Espejo C, Martinez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered in flammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2001; 119: 248–260.

    PubMed  CAS  Google Scholar 

  104. Penkowa M, Hidalgo J, Moos T. Increased astrocytic expression of metallothioneins I+II in brainstem of adult rats treated with 6-aminonicotinamide. Brain Res. 1997; 774: 256–259.

    PubMed  CAS  Google Scholar 

  105. Penkowa M, Giralt M, Moos T, Thomsen PS, Hernández J, Hidalgo J. Impaired inflammatory response to glial cell death in genetically metallothionein-I-and-II-deficient mice. Exp. Neurol. 1999; 156: 149–164.

    PubMed  CAS  Google Scholar 

  106. Penkowa M, Hidalgo J. IL-6 deficiency leads to reduced metallothionein-I+II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment. Exp. Neurol. 2000; 163: 72–84.

    PubMed  CAS  Google Scholar 

  107. Coyle J, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262: 689–695.

    PubMed  CAS  Google Scholar 

  108. Hopkins S, Rothwell N. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci. 1995; 18: 83–88.

    PubMed  CAS  Google Scholar 

  109. Rothwell NJ, Hopkins SJ. Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurol. Sci. 1995: 18: 130–136.

    CAS  Google Scholar 

  110. Stichel C, Verner Müller H. Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Progr. Neurobiol. 1998; 56: 119–148.

    CAS  Google Scholar 

  111. McIntosh T, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury. J. Neurotrauma 1998; 15: 731–769.

    PubMed  CAS  Google Scholar 

  112. Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. USA 1993; 90: 10061–10065.

    PubMed  CAS  Google Scholar 

  113. Stalder AK, Carson MJ, Pagenstecher A, et al. Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor. Am. J. Pathol. 1998; 153: 767–783.

    PubMed  CAS  Google Scholar 

  114. Hernández J, Molinero A, Campbell IL, Hidalgo J. Transgenic expression of interleukin 6 in the central nervous system regulates brain metallothionein-I and-III expression in mice. Brain. Res. Mol. Brain. Res. 1997; 48: 125–131.

    PubMed  Google Scholar 

  115. Giralt M, Carrasco J, Penkowa M, et al. Astrocyte-targeted expression of interleukin-3 and interferon—a causes specific changes in metallothionein expression in the brain. Exp. Neurol. 2001; 168: 334–346.

    PubMed  CAS  Google Scholar 

  116. Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radical Biol. Med. 1993; 14: 325–337.

    CAS  Google Scholar 

  117. Aschner M. The functional significance of brain metallothioneins. Faseb J. 1996; 10: 1129–1136.

    PubMed  CAS  Google Scholar 

  118. Lee DK, Carrasco J, Hidalgo J, Andrews GK. Identification of a signal transducer and activator of transcription (STAT) binding site in the mouse metallothionein-I promoter involved in interleukin-6-induced gene expression. Biochem. J. 1999; 337: 59–65.

    PubMed  CAS  Google Scholar 

  119. Palmiter RD, Sandgren EP, Koeller DM, Brinster RL. Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 1993; 13: 5266–5275.

    PubMed  CAS  Google Scholar 

  120. Michalska AE, Choo KH. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc. Natl. Acad. Sci. USA 1993; 90: 8088–8092.

    PubMed  CAS  Google Scholar 

  121. Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc. Natl. Acad. Sci. USA 1994; 91: 584–588.

    PubMed  CAS  Google Scholar 

  122. Penkowa M, Giralt M, Camats J, Hidalgo J. Metallothionein 1+2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J. Comp. Neurol. 2002; 444: 174–189.

    PubMed  CAS  Google Scholar 

  123. Asanuma M, Miyazaki I, Higashi Y, et al. Aggravation of 6-hydroxydopamine-induced dopaminergic lesions in metallothionein-I and-II knock-out mouse brain. Neurosci. Lett. 2002; 327: 61–65.

    PubMed  CAS  Google Scholar 

  124. Penkowa M, Espejo C, Martinez-Cáceres EM, Montalban X, Hidalgo J. Increased demyelination and axonal damage in metallothionein 1+11-deficient mice during experimental autoimmune encephalomyelitis. Cell. Mol. Life Sci. 2003; 60: 185–197.

    PubMed  CAS  Google Scholar 

  125. Penkowa M, Carrasco J, Giralt M, et al. Altered central nervous system cytokine-growth factor expression profiles and angiogenesis in metallothionein-I+II deficient mice. J. Cereb. Blood Flow Metab. 2000; 20: 1174–1189.

    PubMed  CAS  Google Scholar 

  126. Giralt M, Penkowa M, Lago N. Molinero A, Hidalgo J. Metallothionein-1+2 protect the CNS after a focal brain injury. Exp. Neurol. 2002; 173: 114–128.

    PubMed  CAS  Google Scholar 

  127. Giralt M, Penkowa M, Hernández J, et al. Metallothionein-1+2 deficiency increases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6. Neurobiol. Dis. 2002; 9: 319–338.

    PubMed  CAS  Google Scholar 

  128. Molinero A, Penkowa M, Hernández J, et al. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6. J Neuropathol. Exp. Neurol. 2003; 62: 315–328.

    PubMed  CAS  Google Scholar 

  129. Penkowa M, Camats J, Giralt M, et al. Metallothionein-1 overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression. Glia 2003; 42: 287–306.

    PubMed  Google Scholar 

  130. Penkowa M, Hidalgo J. Treatment with metallothionein prevents demyelination and axonal damage and increases oliogodendrocyte precursors and tissue reapir during experimental autoimmune encephalomyelitis (EAE). J. Neurosci. Res. 2003; 72: 574–586.

    PubMed  CAS  Google Scholar 

  131. Chung RS, Vickers JC, Chuah MI, West AK. Metallothionein-IIA promotes initial neurite elongation and postinjury reactive neurite growth and facilitates healing after focal cortical brain injury. J. Neurosci. 2003; 23: 3336–3342.

    PubMed  CAS  Google Scholar 

  132. Erickson JC, Sewell AK, Jensen LT, Winge DR, Palmiter RD. Enhanced neurotrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res. 1994; 649: 297–304.

    PubMed  CAS  Google Scholar 

  133. Amoureux MC, Van Gool D, Herrero MT, Dom R, Colpaert FC, Pauwels PJ. Regulation of metallothionein-III (GIF) mRNA in the brain of patients with Alzheimer disease is not impaired. Mol. Chem. Neuropathol. 1997; 32: 101–121.

    PubMed  CAS  Google Scholar 

  134. Uchida Y. Growth-inhibitory factor, metallothionein-like protein, and neurodegenerative diseases. Biol. Signals 1994; 3: 211–215.

    PubMed  CAS  Google Scholar 

  135. Arai Y, Uchida Y, Takashima S. Developmental immunohistochemistry of growth inhibitory factor in normal brains and brains of patients with Down syndrome. Pediatr. Neurol. 1997; 17: 134–138.

    PubMed  CAS  Google Scholar 

  136. Hozumi I, Inuzuka T, Hiraiwa M, et al. Changes of growth inhibitory factor after stab wounds in rat brain. Brain Res. 1995; 688: 143–148.

    PubMed  CAS  Google Scholar 

  137. Inuzuka T, Hozumi I, Tamura A, Hiraiwa M, Tsuji S. Patterns of growth inhibitory factor (GIF) and glial fibrillary acidic protein relative level changes differ following left middle cerebral artery occlusion in rats. Brain Res. 1996; 709: 151–153.

    PubMed  CAS  Google Scholar 

  138. Erickson JC, Masters BA, Kelly EJ, Brinster RL, Palmiter RD. Expression of human metallothionein-III in transgenic mice. Neurochem. Int. 1995; 27: 35–41.

    PubMed  CAS  Google Scholar 

  139. Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD. Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J. Neurosci. 1997; 17: 1271–1281.

    PubMed  CAS  Google Scholar 

  140. Montoliu C, Monfort P, Carrasco J, et al. Metallothionein-III prevents glutatmate and nitric oxide neurotoxicity in primary cultures of cerebellar neurons. J. Neurochem. 2000; 75: 266–273.

    PubMed  CAS  Google Scholar 

  141. Chen Y, Irie Y, Keung WM, Maret W. S-Nitrosothiols React Preferentially with Zinc Thiolate Clusters of Metallothionein III through Transnitrosation. Biochemistry 2002; 41: 8360–8367.

    PubMed  CAS  Google Scholar 

  142. Ren H, Ji Q, Liu Y, Ru B. Different protective roles in vitro of alpha- and beta-domains of growth inhibitory factor (GIF) on neuron injuries caused by oxygen free radicals. Biochim. Biophys. Acta 2001; 1568: 129–134.

    PubMed  CAS  Google Scholar 

  143. Irie Y, Keung WM. Metallothionein-III antagonizes the neurotoxic and neurotrophic effects of amyloid beta peptides. Biochem. Biophys. Res. Commun. 2001; 282: 416–420.

    PubMed  CAS  Google Scholar 

  144. Irie Y, Keung WM. Anti-amyloid beta activity of metallothionein-III is different from its neuronal growth inhibitory activity: structure-activity studies. Brain Res. 2003; 960: 228–234.

    PubMed  CAS  Google Scholar 

  145. Uchida Y, Gomi F, Masumizu T, Miura Y. Growth inhibitory factor prevents neurite extension and death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J. Biol. Chem. 2002; 277: 32353–32359.

    PubMed  CAS  Google Scholar 

  146. Shi Y, Wang W, Mo J, Du L, Yao S, Tang W. Interactions of growth inhibitory factor with hydroxyl and superoxide radicals. Biometals 2003; 16: 383–389.

    PubMed  CAS  Google Scholar 

  147. Roschitzki B, Vasak M. Redox labile site in a Zn4 cluster of Cu4,Zn4-metallothionein-3. Biochemistry 2003; 42: 9822–9828.

    PubMed  CAS  Google Scholar 

  148. Sakamoto T, Kawazoe Y, Uchida Y, Hozumi I, Inuzuka T, Watabe K. Growth inhibitory factor prevents degeneration of injured adult rat motoneurons. Neuroreport 2003; 14: 2147–2151.

    PubMed  CAS  Google Scholar 

  149. Carrasco J, Penkowa M, Giralt M, et al. Role of metallothionein-III following central nervous system damage. Neurobiol. Dis. 2003; 13: 22–36.

    PubMed  CAS  Google Scholar 

  150. Bibel M, Barde Y-A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes & Develop. 2000; 14: 2919–2937.

    CAS  Google Scholar 

  151. Benowitz LI, Routtenberg A. GAP-43: an intrinsec determinant of neuronal development and plasticity. Trends. Neurosci. 1997; 20: 84–91.

    PubMed  CAS  Google Scholar 

  152. Sewell AK, Jensen LT, Erickson JC, Palmiter RD, Winge DR. Bioactivity of metallothionein-3 correlates with its novel beta domain sequence rather than metal binding properties. Biochemistry 1995; 34: 4740–4747.

    PubMed  CAS  Google Scholar 

  153. Chung RS, Vickers JC, Chuah MI, Eckhardt BL, West AK. Metallothionein-III inhibits initial neurite formation in developing neurons as well as postinjury, regenerative neurite sprouting. Exp. Neurol. 2002; 178: 1–12.

    PubMed  CAS  Google Scholar 

  154. Chung RS, West AK. A role for extracellular metallothioneins in CNS injury and repair. Neuroscience 2004; 123: 595–599.

    PubMed  CAS  Google Scholar 

  155. Ceballos D, Lago N, Verdu E, et al. Role of metallothioneins in peripheral nerve function and regeneration. Cell. Mol. Life Sci. 2003; 60: 1209–1216.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Hidalgo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, J. Metallothioneins and brain injury: What transgenic mice tell us. Environ Health Prev Med 9, 87–94 (2004). https://doi.org/10.1007/BF02898066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898066

Key words

Navigation