Skip to main content
Log in

Isolation and ectopic expression of a bamboo MADS-box gene

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

A cDNA namedDlMADS18 was isolated from the young spikelets of the sweet bamboo,Dendrocalamus latiflorus by RACE. DNA sequence analysis showed thatDlMADS18 was composed of full ORF and 3′UTR, but without 5′UTR. The cDNA contained 1039 nucleotides and encoded a putative protein of 249 amino acid residues. The gene displayed the structure of a typical plant MADS box gene, which consisted of an MADS domain, K domain, a short I region, and the C-terminal region. Phylogenetic analysis of plant MADS box genes based on amino acid sequences revealed thatDlMADS18 was grouped into theAGAMOUS-LIKE 6 (AGL6)-like subfamily. It was most likely homologous to theOsMADS6 of rice (Oryza sativa), with 88% sequence identity for the entire amino acid sequences. TheDlMADS18 also showed relatively high amino acid sequence identity (59%) toAGL6 ofArabidopsis thaliana. To study the functions ofDlMADS18, DlMADS18 cDNA clone driven by the CaMV 35S promoter was transformed intoArabidopsis plants. Transgenic plants ofDlMADS18 exhibited the phenotypes of curled leaves, dwarfism, and early flowering with clustered terminal flowers. These results indicated thatDlMADS18 may probably be involved in controlling the flowering time ofD. latiflorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, Y. Y., Dean, C., The transition to flowering, Plant Cell, 1998, 10: 1973–1989.

    Article  PubMed  CAS  Google Scholar 

  2. Blázquez, M. A., Flower development pathways, J. Cell Sci., 2000, 113: 3547–3548.

    PubMed  Google Scholar 

  3. Mouradov, A., Cremer, F., Coupland, G., Control of flowering time: Interacting pathways as a basis for diversity, Plant Cell, 2002: S111-S130.

  4. Jack, T., Molecular and genetic mechanisms of floral control, Plant Cell, 2004, 16: S1-S17.

    Article  PubMed  CAS  Google Scholar 

  5. Boss, P. K., Bastow, R. M., Mylne, J. S. et al., Multiple pathways in the decision to flower: Enabling, promoting, and resetting, Plant Cell, 2004, 16: S18-S31.

    Article  PubMed  CAS  Google Scholar 

  6. Simpson, G. G., Dean, C.,Arabidopsis, the rosetta stone of flowering time? Science, 2002, 296: 285–289.

    Article  PubMed  CAS  Google Scholar 

  7. Mandel, M. A., Yanofsky, M. F., A gene triggering flower formation inArabidopsis, Nature, 1995, 337: 522–524.

    Article  Google Scholar 

  8. Michaels, S.D., Amasino, R. M.,FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell, 1999, 11: 949–956.

    Article  PubMed  CAS  Google Scholar 

  9. Hartmann, U., Hohmann, S., Nettesheim, K. et al., Molecular cloning ofSVP: A negative regulator of the floral transition inArabidopsis, Plant J., 2000, 21: 351–360.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, H., Suh, S. S., Park, E. et al., TheAGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways inArabidopsis, Genes Dev., 2000, 14: 2366–2376.

    Article  PubMed  CAS  Google Scholar 

  11. Sheldon, C. C., Rouse, D. T., Finnegan, E. J. et al., The molecular basis of vernalization: The central role ofFLOWERING LOCUS C (FLC), Proc. Natl. Acad. Sci. USA, 2000, 97: 3753–3758.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, H., Xu, Y., Tan, E.L. et al.,AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals, Proc. Natl. Acad. Sci. USA, 2002, 99: 16336–16341.

    Article  PubMed  CAS  Google Scholar 

  13. Borner, R., Kampmann, G., A MADS domain gene involved in the transition to flowering inArabidopsis, Plant J, 2000, 24(5): 591–599.

    Article  PubMed  CAS  Google Scholar 

  14. Theiβen, G., Development of floral organ identity: Stories from the MADS house, Curr. Opin. Plant Biol., 2001, 4: 75–85.

    Article  Google Scholar 

  15. Ng, M., Yanofsky, M., Function and evolution of the plant MADS-box gene family, Nat. Rev. Gen., 2001, 2: 186–195.

    Article  CAS  Google Scholar 

  16. Becker, A., Theissen, G., The major clades of MADS-box genes and their role in the development and evolution of flowering plants, Mol. Phylogenet. Evol., 2003, 29(3): 464–489.

    Article  PubMed  CAS  Google Scholar 

  17. Ratcliffe, O. J., Nadzan, G. C., Reuber, T. L. et al., Regulation of flowering inArabidopsis by anFLC homologue, Plant Physiol., 2001, 126: 122–132.

    Article  PubMed  CAS  Google Scholar 

  18. Samach, A., Onouchi, H., Gold, S. E. et al., Distinct roles ofCONSTANS target genes in reproductive development ofArabidopsis, Science, 2000, 288: 1613–1616.

    Article  PubMed  CAS  Google Scholar 

  19. Kempin, S. A., Savidge, B., Yanofsky, M. F., Molecular basis of the cauliflower phenotype inArabidopsis, Science, 1995, 267: 522–525.

    Article  PubMed  CAS  Google Scholar 

  20. Mandel, M. A., Yanofsky, M. F., TheArabidopsis AGL9 MADS box gene is expressed in young flower primordial, Sex Plant Reprod., 1998, 11: 22–28.

    Article  CAS  Google Scholar 

  21. Tzeng, T. Y., Hsiao, C. C., Chi, P. J. et al., Two lilySEPAL-LATA-like genes cause different effects on floral formation and floral transition inArabidopsis, Plant Physiol., 2003, 133: 1091–1101.

    Article  PubMed  CAS  Google Scholar 

  22. Simon, T. M., Elizabeth, A. K., Heterogeneous expression patterns and separate roles of theSEPALLATA geneleafy hull sterilel in grasses, Plant Cell, 2004, 16: 1692–1706.

    Article  Google Scholar 

  23. Ma, H., Yanofsky, M. F., Meyerowitz, E. M.,AGL1–AGL6, anArabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev., 1991, 5: 484–495.

    Article  PubMed  CAS  Google Scholar 

  24. Theiβen, G., Kim, J., Saedler, H., Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes, J. Mol. Evol., 1996, 43: 484–516.

    Article  Google Scholar 

  25. Janzen, D. H., Why bamboos wait so long to flower? Ann. Rev. Ecol. Syst., 1976, 7: 347–391.

    Article  Google Scholar 

  26. Sharma, M. L., The flowering of bamboo: Fallacies and facts. Bamboo in Asia and the Pacific, Thailand: Chiangmai, 1994, 68–70.

    Google Scholar 

  27. Ueda, K., Studies on the physiology of bamboo, with references to practical application, Tokyo: Prime Minister’s Office, 1960, 167.

    Google Scholar 

  28. Nelson, B. W., Natural forest disturbance and change in the Brazilian Amazon, Remote Sensing Reviews, 1994, 10: 105–125.

    Google Scholar 

  29. Franklin, D. C., Synchrony and asynchrony: Observations and hypotheses for the flowering wave in a long-lived semelparous bamboo, J. Biogeography, 2004, 31(5): 773–786.

    Google Scholar 

  30. Keeley, J. E., Bond, W. J., Mast flowering and semelparity in bamboos: The bamboo fire cycle hypothesis, Am. Naturalist, 1999, 154: 383–391.

    Article  Google Scholar 

  31. Wong, K. M., Flowering, fruiting and germination of the bambooSchizostachyum zollingeri in Perlis, Malaysian Forester, 1981, 44: 453–463.

    Google Scholar 

  32. Zhang, G. C., Chen, F. S., Wang, Y. X., Study on rapid propagationin vitro ofDendrocalamus latiflous, J. Bamboo Res., 1993, 12: 7–15.

    Google Scholar 

  33. Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, 15: 473–479.

    Article  CAS  Google Scholar 

  34. Swofford, D. L., PAUP: Phylogenetic analysis using parsimony, version 4.0b10, Sinauer Associates Massachusetts, USA, 2001.

  35. Clough, S. J., Bent, A. F., Floral dip: A simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana, Plant J., 1998, 16(6): 735–43.

    Article  PubMed  CAS  Google Scholar 

  36. Sambrook, J., Russell, D. W., Molecular Cloning: A Laboratory Manual, 3rd ed, New York: Cold Harbor Laboratory Press, 2002, 540–544,721-725.

    Google Scholar 

  37. Theiβen, G., Becker, A., Di Rosa, A. et al., A short history of MADS-box genes in plants, Plant Mol. Biol., 2000, 42: 115–149.

    Article  Google Scholar 

  38. Mouradov, A., Glassick, T. V., Hamdorf, B. A. et al., Family of MADS-box genes expressed in early male and female reproductive structures of Monterey Pine, Plant Physiol., 1998, 117: 55–61.

    Article  PubMed  CAS  Google Scholar 

  39. Rounsley, S. D., Ditta, G. S., Yanofsky, M. F., Diverse roles for MADS box genes inArabidopsis development, Plant Cell, 1995, 7: 1259–1269.

    Article  PubMed  CAS  Google Scholar 

  40. Mena, M., Mandel, M. A., Lerner, D. R. et al., A characterization of the MADS-box gene family in maize, Plant J., 1995, 8: 845–854.

    PubMed  CAS  Google Scholar 

  41. Winter, K. U., Becker, A., Münster, T., et al., MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants, Proc. Natl. Acad. Sci. USA, 1999, 96: 7342–7347.

    Article  PubMed  CAS  Google Scholar 

  42. Hsu, H. F., Huang, C. H., Chou, L. T. et al., Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes inArabidopsis thaliana, Plant Cell Physiol., 2003, 44(8): 783–794.

    Article  PubMed  CAS  Google Scholar 

  43. Carlsbecker, A., Tandre, K., Johanson, U. et al., The MADS-box geneDAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies), Plant J., 2004, 40: 546–557.

    Article  PubMed  CAS  Google Scholar 

  44. Chung, Y. Y., Kim, S. R., Finkel, D. et al., Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene, Plant. Mol. Biol., 1994, 26: 657–665.

    Article  PubMed  CAS  Google Scholar 

  45. Kang, H. G., An, G., Isolation and characterization of a rice MADS box gene belonging to theAGL2 gene family, Mol. Cells, 1996, 7: 45–51.

    Google Scholar 

  46. Kang, H. G., Jang, S., Chung, J. E. et al., Characterization of two rice MADS box genes that control flowering time, Mol. Cells, 1997, 7: 559–566.

    PubMed  CAS  Google Scholar 

  47. Kyozuka, J., Harcourt, R., Peacock, W. J. et al.,Eucalyptus has functional equivalents of theArabidopsis AP1 gene, Plant Mol. Biol., 1997, 35, 573–584.

    Article  PubMed  CAS  Google Scholar 

  48. Honma, T., Goto, K., Complexes of MADS-box proteins are sufficient to convert leaves into floral organs, Nature, 2001, 409: 525–529.

    Article  PubMed  CAS  Google Scholar 

  49. Pelaz, S., Gustafson-Brown, C., Kohalmi, A. E. et al.,APETALA1 andSEPALLATA3 interact to promote flower development, Plant J., 2001, 26: 385–394.

    Article  PubMed  CAS  Google Scholar 

  50. Jeon, J. S., Jang, S., Lee, S. et al.,leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development, Plant Cell, 2000, 12: 987–884.

    Article  Google Scholar 

  51. Savidge, B., Rounsley, S. D., Yanofsky, M. F., Temporal relationships between the transcription of twoArabidopsis MADS box genes and the floral organ identity genes, Plant Cell, 1995, 7: 721–733.

    Article  PubMed  CAS  Google Scholar 

  52. Pelaz, S., Ditta, G. S., Baumann, E. et al., B and C floral organ identity functions requireSEPALLATA MADS-box genes, Nature, 2000, 405: 200–203.

    Article  PubMed  CAS  Google Scholar 

  53. Sedgley, M., Flowering of deciduous perennial fruit crops, Hort. Rev., 1990, 12: 223–264.

    Google Scholar 

  54. Kochankov, V. G., Milyaeva, E. L., Zhyvukhina, E. A. et al., Effect of 6-Benzylaminopurine on stem formation and flower bud intiation inRudbeckia bicolor plants of different ages under noninductive conditions, Acta Horticulturae, 1989, 251.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhu Li.

About this article

Cite this article

Tian, B., Chen, Y., Yan, Y. et al. Isolation and ectopic expression of a bamboo MADS-box gene. Chin.Sci.Bull. 50, 217–224 (2005). https://doi.org/10.1007/BF02897530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897530

Keywords

Navigation