Skip to main content
Log in

Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat

  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

Unidirectional blood-brain barrier transfer of the lipophilic anticancer agents vincristine and vinblastine was studied in anesthetized rats, using an isolated, in situ brain perfusion technique. Drug binding to plasma constituents was also measured. Despite the high lipophilicity of these agents (the log octanol/physiological saline partition coefficient equalled 2.14 and 1.68, respectively), the cerebrovascular permeability-surface area product, PA, of vincristine in plasma was only 0.49 × 10−4 ml s−1 g−1 for parietal cerebral cortex, whereas that of vinblastine was too low for determination. These values are similar to those of water-soluble, poorly diffusible nonelectrolytes. The PAs were significantly higher in the absence of plasma protein, being 1.24 × 10−4 and 5.36 × 10−4 ml s−1 g−1, respectively. Even these values, determined by brain perfusion of protein-free buffer, were lower than would be expected from the lipophilicity of the agents. The results suggest that additional factors, such as steric hindrance and molecular charge distribution, related to the chemical and geometric structure and the large size of vincristine and vinblastine (molecular weight, 825 and 814 daltons, respectively) restrict their passage across the blood-brain barrier. As a consequence of their paradoxically low permeability at the blood-brain barrier and restrictive binding to plasma and blood constituents, doses of both agents that cause significant inhibition of extracerebral Walker 256 carcinosarcoma tumor implants in rat have no effect on tumor located in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Affra D (1973) Vincristine therapy in malignant glioma recurrences. Neurochirurgia (Stuttg) 16: 189–198

    Google Scholar 

  2. Ames MM, Powis G, Kovach JS (1983) Pharmacokinetics of anti-cancer agents in humans. Elsevier, Amsterdam

    Google Scholar 

  3. Bender RA, Chabner B (1982) Tubulin binding agents. In: Chabner B (ed) Pharmacoligical principles of cancer treatment. WB Saunders, Philadelphia, p 256

    Google Scholar 

  4. Bender RA, Castle MC, Margileth DA, Oliverio VT (1977) The pharmacokinetics of [3H]-vincristine in man. Clin Pharmacol Ther 22: 430–438

    PubMed  CAS  Google Scholar 

  5. Braham J, Sarova-Pinhas I, Goldhammer Y (1969) Glioma of the brain treated with intravenous vincristine sulfate. Neurochirurgia (Stuttg) 12: 195–200

    CAS  Google Scholar 

  6. Calabresi P, Parks E (1980) Antiproliferative agents and drugs used for immunosuppression. In: Goodman A, Gilman S (eds) The pharmacoligical basis of therapeutics. Macmillan, London

    Google Scholar 

  7. Carter SK, Bakowski MT, Hellman K (1987) Chemotherapy of cancer, 3rd edn. Wiley Medical, New York

    Google Scholar 

  8. Castle MC, Margileth DA, Oliverio VT (1976) Distribution and excretion of [3H]-vincristine in the rat and the dog. Cancer Res 36: 3684–3689

    PubMed  CAS  Google Scholar 

  9. Cefalu WT, Pardridge WM (1985) Restrictive transport of a lipid-soluble peptide (cyclosporin) through the blood-brain barrier. J Neurochem 45: 1954–1956

    Article  PubMed  CAS  Google Scholar 

  10. Chen T, Mealey J (1970) Microculture of human brain tumors. Cancer Chemother Rep 54: 9–14

    PubMed  CAS  Google Scholar 

  11. Creasey WA (1979) The vinca alkaloids. In: Hahn FE (ed) Antibiotics, vol 2. Springer, Berlin, p 414

    Google Scholar 

  12. Dareer S, White V, Chen F, Mellet L, Hill D (1977) Distribution and metabolism of vincristine in mice, rats, dogs and monkeys. Cancer Treat Rep 61: 1269–1277

    PubMed  Google Scholar 

  13. Donigian DW, Owellen RJ (1973) The interaction of vinblastine, vincristine and colchinine with serum proteins. Biochem Pharmacol 22: 2113–2119

    Article  PubMed  CAS  Google Scholar 

  14. Dorr R, Fritz W (1980) Cancer chemotherapy handbook. Kimpton, London

    Google Scholar 

  15. Finklestein J, Arima E, Byfield P, Byfield J, Fonkalsrud E (1973) Murine neuroblastoma: a model of human disease. Cancer Chemother Rep 57: 405–412

    PubMed  CAS  Google Scholar 

  16. Finklestein J, Tittle K, Meshnik R, Weiner J (1975) Murine neuroblastoma: a further evaluation of C1300 model with single antitumor agents. Cancer Chemother Rep 59: 975–983

    PubMed  CAS  Google Scholar 

  17. Gerzon K (1980) Dimeric catharathus alkaloids. In: Cassady JM, Douros JD (eds) Anticancer agents based on natural product models. Academic Press, New York, p 271–317

    Google Scholar 

  18. Greig NH (1984) Chemotherapy of brain metastases: current status. Cancer Treat. Rev 11: 157–180

    Article  PubMed  CAS  Google Scholar 

  19. Greig NH (1987) Optimizing drug delivery to brain tumors. Cancer Treat Rev 14: 1–28

    Article  PubMed  CAS  Google Scholar 

  20. Greig NH (1989) Drug delivery to the brain by blood-brain barrier circumvention and drug modification. In: Neuwelt EA (ed) Clinical impact of the blood-brain barrier and its manipulation: basic studies, vol 1. Plenum Press, New York, pp 311–367

    Google Scholar 

  21. Greig NH, Rapoport SI (1988) Comparative brain and plasma pharmacokinetics and anticancer activities of chlorambucil and melphalan in the rat. Cancer Chemother Pharmacol 21: 1–8

    Article  PubMed  CAS  Google Scholar 

  22. Greig NH, Jones H, Cavanagh J (1983) Blood-brain barrier integrity and host responses in experimental metastatic brain tumors. Clin Exp Metastasis 1: 229–246

    Article  PubMed  CAS  Google Scholar 

  23. Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI (1987) Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res 47: 1571–1576

    PubMed  CAS  Google Scholar 

  24. Greig NH, Sweeney DJ, Rapoport SI (1987) Melphalan concentration dependent plasma protein binding in healthy humans and rats. Eur J Clin Pharmacol 32: 179–185

    Article  PubMed  CAS  Google Scholar 

  25. Hirano A, Zimmerman HM (1970) Some effects of vinblastine implantation in the cerebral white matter. Lab Invest 23: 358–367

    PubMed  CAS  Google Scholar 

  26. Jackson DV, Bender RA (1979) Cytotoxic thresholds of vincristine in a murine and human leukemic cell line in vitro. Cancer Res 39: 4346–4351

    PubMed  CAS  Google Scholar 

  27. Jackson DV, Castle MC, Bender RA (1978) Biliary excretion of vincristine. Clin Pharmacol Ther 24: 101–107

    PubMed  Google Scholar 

  28. Jackson DV, Castle MC, Poplack DG, Bender RA (1980) Pharmacokinetics of vincristine in the cerebrospinal fluid of subhuman primates. Cancer Res 40: 722–724

    PubMed  CAS  Google Scholar 

  29. Jackson DV, Sethi VS, Spurr CL, McWhorter JM (1981) Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res 41: 1466–1468

    PubMed  Google Scholar 

  30. Jackson DV, Sethi VS, Spurr CL, White DR, Richards F, Stuart JJ, Muss HB, Cooper MR, Castle M (1981) Pharmacokinetics of vincristine infusion. Cancer Treat Rep 65: 1043–1048

    PubMed  Google Scholar 

  31. Kaplan RS, Wiernik PH (1982) Neurotoxicity of antineoplastic drugs. Semin Oncol 9: 103–130

    PubMed  CAS  Google Scholar 

  32. King KL, Boder GB (1979) Correlation of the clinical neurotoxicity of the vinca alkaloids vincristine, vinblastine and vindesine with their effects on cultured rat midbrain cells. Cancer Chemother Pharmacol 2: 239–242

    Article  PubMed  CAS  Google Scholar 

  33. Miller R (1966) Simultaneous statistical inferences. McGraw-Hill, New York, pp 76–81

    Google Scholar 

  34. Momma S, Aoyagi M, Rapoport SI, Smith QR (1971) Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J Neurochem 48: 1291–1300

    Article  Google Scholar 

  35. Nelson RL, Dyke RW, Root MA (1980) Comparative pharmacokinetics of vindesine, vincristine and vinblastine in patients with cancer. Cancer Treat Rev 7: 17–24

    Article  PubMed  Google Scholar 

  36. Omiwa K, Hazama F, Mikawa H (1983) Neurotoxicity of vincristine after the osmotic opening of the blood-brain barrier. Neuropathol Appl Neurobiol 9: 345–354

    Google Scholar 

  37. Owellen RJ, Hartke CA, Hains FO (1977) Pharmacokinetics and metabolism of vinblastine in humans. Cancer Res 37: 2597–2602

    PubMed  CAS  Google Scholar 

  38. Owens G (1969) Intra-arterial chemotherapy of primary brain tumors. Ann NY Acad Sci 159: 603–607

    Article  Google Scholar 

  39. Rosenstock J, Evans A, Schut L (1976) Response to vincristine of recurrent brain tumors in children. J Neurosurg 45: 135–140

    Article  PubMed  CAS  Google Scholar 

  40. Selvin MJ, Slaquet MJ (1986) Randomized trials in cancer: a critical review by sites. Raven Press, New York, p 15

    Google Scholar 

  41. Sethi VS, Thimmaiah KN (1985) Structural studies on the degradation products of vincristine dihydrogen sulfate. Cancer Res 45: 5386–5389

    PubMed  CAS  Google Scholar 

  42. Sethi VS, Surratt P, Spurr CL (1984) Pharmacokinetics of vincristine, vinblastine and vindesine in rhesus monkeys. Cancer Chemother Pharmacol 12: 31–35

    Article  PubMed  CAS  Google Scholar 

  43. Shapiro W (1971) Studies on the chemotherapy of experimental brain tumors. Evaluation of CCNU, vincristine and 5FU. Natl Cancer Inst Monogr 46: 359–369

    CAS  Google Scholar 

  44. Smith QR, Takasato Y (1986) Kinetics of amino acid transport at the blood-brain barrier studied using an in situ brain perfusion technique. Ann NY Acad Sci 481: 186–201

    Article  PubMed  CAS  Google Scholar 

  45. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid across the blood-brain barrier. J Neurochem 49: 1651–1658

    Article  PubMed  CAS  Google Scholar 

  46. Steele WH, King DJ, Barber HE, Hawksworth GM, Dawson AA, Petrie JC (1983) The protein binding of vinblastine in the serum of normal subjects and patients with Hodgkin’s disease. Eur J Clin Pharmacol 24: 683–687

    Article  PubMed  CAS  Google Scholar 

  47. Stein WD (1986) Simple diffusion across the membrane bilayer. In: Stein WD, Lieb WR (eds) Transport and diffusion across cell membranes. Academic Press, London, pp 69–107

    Google Scholar 

  48. Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247: H484-H493

    PubMed  CAS  Google Scholar 

  49. Thimmaiah KN, Sethi VS (1985) Chemical characterization of the degradation products of vinblastine dihydrogen sulfate. Cancer Res 45: 5382–5385

    PubMed  CAS  Google Scholar 

  50. Thompson GL, Boder GB, Bromer WW, Grindey GB, Poore GA (1982) Ly 119863, a novel potent vincy analogue with unique biological properties. Proc Am Assoc Cancer Res 23: 201

    Google Scholar 

  51. Wenger R (1982) Chemistry of cyclosporin. In: White DJG (ed) Cyclosporin A. Elsevier, New York, p 20

    Google Scholar 

  52. Wu Y, Genka S, Shitara N, Wada T, Takakura K (1987) Effect of vincristine on human glioma cell line: flow cytometry analysis of DNA and bromodeoxyuridine. J Clin Exp Med (Jpn) 142: 777–778

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greig, N.H., Soncrant, T.T., Shetty, H.U. et al. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol 26, 263–268 (1990). https://doi.org/10.1007/BF02897227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897227

Keywords

Navigation