Skip to main content
Log in

Identification of quantitative trait loci affecting tolerance to low phosphorus in rice (Oryza Sativa L.)

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

Phosphorus (P)-deficiency in rice (Oryza. Sativa. L) may cause yield reductions. This research has been conducted to map quantitative trait loci (QTLs) for tolerance to low phosphorus stress in a doubled haploid (DH) population. By using the linkage map of this population, the QTLs for relative dry weight, relative P content and relative P utilization efficiency have been located. The results indicate that one RFLP marker located on chromosome 6 is closely associated with relative root dry weight, relative shoot dry weight and relative total dry weight, which explain 24.9%, 20.5% and 25.2% of the total phenotypic variations, respectively. Two QTLs affect relative P uptake content, which account for 20.7% of the total phenotypic variations. One micro-effect QTL has been found to be associated with relative P utilization efficiency. It is suggested that the P uptake efficiency is more associated with P efficiency. Among the secondary physiological indices of P uptake efficiency, the root dry weight is more important than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horst, W. J., Abdou, M., Wiesler, F., Genotypic differences in phosphorus efficiency of wheat, Plant and Soil, 1993, 155/156: 293.

    Article  Google Scholar 

  2. Fageria, N. K., Baligar, V. C., Upland rice genotype evaluation for phosphorus use efficiency, Journal of Plant Nutrition, 1997, 20(15): 499.

    CAS  Google Scholar 

  3. Alvaro Eleuterio da silva, Warren, H. G., Screening maize inbred lines for tolerance to low-P stress condition, Plant and Soil, 1992, 146:181.

    Article  CAS  Google Scholar 

  4. Bochev, B., Genetice basis of mineral nutrition inTriticum aestivum L. II Effect of the cytoplasm on the absorption of nutrient elements, Genetics Aspects of Plant Nutrition, Netherlands: Martinus Nijhoff Publishers, 1983, 429.

    Google Scholar 

  5. Reiter, R. S., Coors, J. G., Sussman, M R. et al., Genetics analysis of tolerance to low-phosphorus stress in maize using RFLP, Theor. Appl. Genet., 1991, 82: 561.

    Article  CAS  Google Scholar 

  6. Majumder, N. D., Rakshit, S. C., Borthakur, D. N., Genetic effect on uptake of selected nutrients in some rice, Plant and Soil, 1990, 123: 117.

    CAS  Google Scholar 

  7. Li, C. L., Zheng, K. L., RAPD-based analysis for the QTLs related to plant height and heading date, Acta Genetica Sinica (in Chinese), 1998, 25(1): 34.

    Google Scholar 

  8. Zhang, G., Angeles, E. R., Abenes, M. L. P. et al., RAPD and RFLP mapping of the bacterial blight resistance gene Xa-13 in rice, Theor. Appl. Genet., 1996, 93: 65.

    Article  CAS  Google Scholar 

  9. Wu, P., Luo, A. C., Ni, J. J. et al., Mapping QTL for potasium deficiency tolerance in rice (Oryza Sativa L.), Plant Nutrition and Fertilizer Science (in Chinese), 1997, 3 (3): 209.

    Google Scholar 

  10. Liu, Y. S., Zhu, L. H., Sun, J. S. et al., Mapping quantitative trait loci for reproductive barriers occurring in hybrid betweenindica andjaponica rice, Acta Botanica Sinica (in Chinese), 1997, 27(5): 421.

    Google Scholar 

  11. Gong, J. M., He, P., Qian, Q. et al., Mapping quantitative trait loci for salt tolerance in rice, Chinese Science Bulletin, 1998, 43(17): 1847.

    Google Scholar 

  12. Mclachlan, K. D., Acid phosphatase: Activity of intact roots and phophorus nutrition in plants. I assay conditions and phosphatase activity, Aust. J. Agric.Res., 1980, 31:429.

    Article  CAS  Google Scholar 

  13. Lu, C. F., Shen, L. S., Tan, Z. B. et al., Comparative QTL mapping of agronomic quantitative across environments, Theor. Appl. Genet., 1996, 93:1211.

    Article  CAS  Google Scholar 

  14. Zhu, L. H., He, P., Genetic molecular linkage map construction and mapping the important quality and quantitative trait loci in rice (Oryza Sativa L.), Journal of Fudan University (Natural Science) (in Chinese), 1998, 137(4): 509.

    Google Scholar 

  15. Lincoln, S. E., Daly, M. J., Lander, E. S., Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL Version 1.1: A Tutorial and Reference Manual, 2nd ed., Cambridge, Mass: Whitehead Institute for Biometrical Research, 1993.

    Google Scholar 

  16. Lander, E. S., Bostein, D., Mapping mondelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 1989, 121: 185.

    PubMed  CAS  Google Scholar 

  17. Ding, H., Li, S. X., Guo, Q. Y. et al., Study on the correlation between acid phosphatase activity and low P tolerance ability in soybean, Plant and Nutrition Science (in Chinese), 1997, 3(2): 123.

    Google Scholar 

  18. He, P., Li, S. G., Li, J. Z. et al., Genetic analysis of genes for rice cooking and appearance quality, Chinese Science Bulletin, 1998, 43(6): 1747.

    Article  Google Scholar 

  19. Noordwijk, van M., Willigen, de P., Ehlert, P. et al., A simple model of P uptake by crops as a possible basis for P fertilizer recommendation, Neth. J. Agric. Sci., 1990, 38: 317.

    Google Scholar 

  20. McMullen, M. D., Byrne, P. F., Snook, M. E. et al., Quantitative trait loci and metabolic pathways, Proc.Natl. Acad. Sci. USA, 1998, 95: 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ming, F., Zheng, X., Mi, G. et al. Identification of quantitative trait loci affecting tolerance to low phosphorus in rice (Oryza Sativa L.). Chin.Sci.Bull. 45, 520–525 (2000). https://doi.org/10.1007/BF02887097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02887097

Keywords

Navigation