Skip to main content
Log in

Molecular evolution of the exon 2 of CHS genes and the possibility of its application to plant phylogenetic analysis

  • Papers
  • Published:
Chinese Science Bulletin

Abstract

The exon 2 of chalcone synthase (CHS) gene is relatively conserved during evolution. In this study, three exon 2 fragments from two species in gymnosperm (Cycas panzhihuaensis, Ginkgo biloba) and seven from four species in angiosperm (Magnolia denudata, Salix babylonica, Nymphaea tetragona, Camellia japonica) have been amplified by PCR from genomic DNA and sequenced. Together with other 73 sequences ofCHS collected from EMBL database and literature, these sequences, which embrace 19 families of gymnosperm and angiosperm, have been analyzed for their phylogenetic relations by parsimony method. The result indicated that sequences from the same systematic family usually grouped together except those from Theaceae, Magnoliaceae and Nymphaeaceae. The relative rate test revealed the rate heterogeneity of CHS genes among the families. For the nucleotide substitution the sequences from Asteraceae and Solanaceae evolve faster than those from the other families analyzed while the sequences from Poaceae, Asteraceae and Solanaceae evolve faster for the nonsynonymous substitution. These results suggest that the duplication and extinction events of CHS genes are different among systematic families, therefore it seems impractical to look for orthologous sequences from CHS genes to study plant phylogeny at the family level andlor above. However, it is possible to do so below the family level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chase, M. W., Soltis, D. E., Olmstead, R. G. et al., Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL, Ann. Missouri. Bot. Gard., 1993, 80: 528.

    Article  Google Scholar 

  2. Soltis, D. E., Soltis, P. S., Nickrent, D. L. et al., Angiosperm phylogeny inferred from 18S ribosomal DNA sequence, Ann. Missouri. Bot. Gard., 1997, 84: 1.

    Article  Google Scholar 

  3. Kim, K. J., Jansen, R. K., NdhF sequence evolution and the major clades in the sunflower family, Proc. Natl. Acad. Sci. USA, 1995, 92: 10379.

    Article  PubMed  CAS  Google Scholar 

  4. Mathews, S., Donoghue, M. J., The root of angiosperm phylogeny inferred from duplicate phytochrome genes, Science, 1999, 286 (5441): 947.

    Article  PubMed  CAS  Google Scholar 

  5. Koes, R. E., Francesca, Q., Joseph, N. M. Mol., The flavonoid biosynthetic pathway in plants: function and evolution, Bioessays, 1993. 16: 123.

    Article  Google Scholar 

  6. Martin, C. R., Structure, function, and regulation of the chalcone synthase, International Review of Cytology, 1993, 147: 233.

    Article  PubMed  CAS  Google Scholar 

  7. Ursula, N. K., Barzen, E., Bernhardt, J. et al., Chalcone synthase genes in plants: a tool to study evolutionary relationships, J. Mol. Evol., 1987, 26: 213.

    Article  Google Scholar 

  8. Sommer, H., Saedler, H., Structure of the chalcone synthase gene ofAntirrhinum majus, Mol. Gen. Genet., 1986, 202: 429.

    Article  CAS  Google Scholar 

  9. Thompson, J. D., Higgins, D. G., Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994. 22: 4673.

    Article  PubMed  CAS  Google Scholar 

  10. Felsenstein, J., PHYLIP (Phylogeny Inference Package) version 35, distributed by the author, Department of Genetics, University of Washington, Seattle, USA, 1993.

  11. Robinson, M., Gouy, M., Gautier, C. et al., Sensitivity of the relative-rate test to taxonomic sampling, Mol. Biol. Evol., 1998, 15: 1091.

    PubMed  CAS  Google Scholar 

  12. Stafford, H. A., Flavonoid evolution: an enzymatic approach, Plant Physiol., 1991, 96: 680.

    PubMed  CAS  Google Scholar 

  13. Hemnann, A., Schulz, W., Hahlbrock, K., Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element, Mol. Gen. Genet., 1988, 12 (1): 93.

    Google Scholar 

  14. Feinbaum, R. L., Ausubel, F. M., Transcriptional regulation of theArabidopsis thaliana chalcone synthase gene, Mol. Cell. Biol., 1988, 8: 1985.

    PubMed  CAS  Google Scholar 

  15. Wienand, U., Sommer, H., Schwarz, U. et al., A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations, Mol. Gen. Genet., 1982, 187: 195.

    Article  CAS  Google Scholar 

  16. Daniel, L. N., Douglas, E. S., A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences, Ann. Missouri. Bot. Gard., 1995, 82: 208.

    Article  Google Scholar 

  17. Wingender, R., Rohrig, H., Horicke, C. et al., Differential regulation of soybean chalcone synthase genes in plant defense, symbiosis and upon environmental stimuli, Mol. Gen. Genet., 1989, 218(2): 315.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wang, J., Qu, L., Chen, J. et al. Molecular evolution of the exon 2 of CHS genes and the possibility of its application to plant phylogenetic analysis. Chin.Sci.Bull. 45, 1735–1742 (2000). https://doi.org/10.1007/BF02886256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886256

Keywords

Navigation