Skip to main content
Log in

Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Lateif K, Vaissayre V, Gherbi H, Verries C, Meudec E, Perrine-Walker F, Cheynier V, Svistoonoff S, Franche C, Bogusz D, Hocher V (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Abe I, Takahashi Y, Morita H, Noguchi H (2001) Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum. Eur J Biochem 268:3354–3359

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Morita H, Noma H, Kohno T, Noguchi H, Abe I (2007) Structure function analysis of benzalacetone synthase from Rheum palmatum. Bioorg Med Chem Lett 17:3161–3166

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  CAS  PubMed  Google Scholar 

  • Azpilicueta CE, Zawoznik MS, Tomaro ML (2004) Phytoalexins synthesis is enhanced in groundnut plants inoculated with Bradyrhizobium sp. (Arachis). Crop Prot 23:1069–1074

    Article  CAS  Google Scholar 

  • Beerhues L, Liu B (2009) Biosynthesis of biphenyls and benzophenones–evolution of benzoic acid-specific type III polyketide synthases in plants. Phytochemistry 70:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Biol 42:79–92

    Article  CAS  PubMed  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2009) Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol Biochem 47:167–174

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Ming F, Wang W, Wang JW, Ye MM, Shen DL (2006) Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis orchid. Genetica 128:429–438

    Article  CAS  PubMed  Google Scholar 

  • Heller W, Hahlbrock K (1980) Highly purified “flavanone synthase” from parsley catalyzes the formation of naringenin chalcone. Arch Biochem Biophys 200:617–619

    Article  CAS  PubMed  Google Scholar 

  • Holding DR, Meeley RB, Hazebroek J, Selinger D, Gruis F, Jung R, Larkins BA (2010) Identification and characterization of the maize arogenate dehydrogenase gene family. J Exp Bot 61:3663–3673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horinouchi S (2009) Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr Opin Chem Biol 13:197–204

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Lu C, Wu B, Fan L (2007) A rhizobia strain isolated from root nodule of gymnosperm Podocarpus macrophyllus. Sci China C Life Sci 50:228–233

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Ichinose Y, Kato H, Shiraishi T, Yamada T (1997) Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol Gen Genet 255:28–37

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Austin MB, Ferrer J, Bowman ME, Schroder J, Noel JP (2000a) Structural control of polyketide formation in plant-specific polyketide synthases. Chem Biol 7:919–930

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Ferrer JL, Bowman ME, Dixon RA, Noel JP (2000b) Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39:890–902

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Kim SY, Suh DY (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol 49:691–701

    Article  CAS  PubMed  Google Scholar 

  • Krause A, Lan VT, Broughton WJ (1997) Induction of chalcone synthase expression by rhizobia and nod factors in root hairs and roots. Mol Plant Microbe Interact 10:388–393

    Article  CAS  PubMed  Google Scholar 

  • Li WH (1997) Molecular evolution. Sinauer Associate Inc, Sunderland

    Google Scholar 

  • Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Rausher MD (2003) Evolutionary rate variation in anthocyanin pathway genes. Mol Biol Evol 20:1844–1853

    Article  CAS  PubMed  Google Scholar 

  • Melchior F, Kindl H (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 268:17–20

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and non-synonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Preisig-Muller R, Gnau P, Kindl H (1995) The inducible 9,10-dihydrophenanthrene pathway: characterization and expression of bibenzyl synthase and S-adenosylhomocysteine hydrolase. Arch Biochem Biophys 317:201–207

    Article  CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Huchon D (2000) RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Springob K, Samappito S, Jindaprasert A, Schmidt J, Page JE, De-Eknamkul W, Kutchan TM (2007) A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. FEBS J 274:406–417

    Article  CAS  PubMed  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Stuessy TF (2004) A transitional-combinational theory for the origin of angiosperms. Taxon 53:3–16

    Article  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schroder J, Schroder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618

    Article  CAS  PubMed  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from National Natural Science Fundation of China (No. 30900782), Foundation of Chinese Postdoctor (No. 20080440580), Foundation of Postdoctor in Shanghai (No. 09R21411000),and the graduate student education innovation plan of University of Shanghai for Science and Technology, the minimally invasive inspiring innovation fund of University of Shanghai for Science (2013.10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhao, W., Wang, Z. et al. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes. Genetica 142, 215–225 (2014). https://doi.org/10.1007/s10709-014-9768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9768-3

Keywords

Navigation