Skip to main content
Log in

The universality and biological significance of signal molecules with intracellular-extracellular compatible functions

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Generally, cell signal molecules are classified into the extracellular signal molecules (the first messengers) and the intracellular signal ones (the second messengers). Cyclic adenosine monophosphate (CAMP), calcium ions and calmodulin (CaM) are the traditional intracellular messengers, but they are also present in extracellular matrix (ECM). Some of them have been discovered to act as the first messengers through cell surface receptors. Other second messengers, such as cyclic guanosine monophosphate (cGMP), cyclic adenosine diphosphate ribose (cADPR) and annexin, are also found existing outside animal and plant cells. The existence of these messengers with intracellular-extracellular compatible functions in cells may be a regular biological phenomenon. These compatible messengers might be the communication factors between intracellular and extracellular regions or among the cell populations, and are also important in regulating cell development procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein, P. S., Sun, T. J., Saxe III, C. L. et al., A chemoattractant receptor controls development in Dictyostelium discoideum, Science, 1989, 241: 1467.

    Article  Google Scholar 

  2. Firtel, R. A., Signal transduction pathways controlling multicellular development in Dictyostelium, TIG, 1991, 7(11/12): 381.

    PubMed  CAS  Google Scholar 

  3. Endl, I., Konzck, A., Nellen, W., Antagonistic effects of signal transduction by intracellular and extracellular cAMP on gene regulation in Dictyostelium., Mol. Biol. Cell, 1996, 7: 17.

    PubMed  CAS  Google Scholar 

  4. Nemeth, E. F., Scarpa, A., Rapid mobilization of cellular calcium in bovine parathyroid cells evoked by extracellular divalent cations, evidence for a cell surface calcium receptor, Biol. Chem., 1987, 262: 5188.

    CAS  Google Scholar 

  5. Brown, E. M., Extracellular ca2+-sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as first messenger, Physiol. Rev., 1991, 71: 371.

    PubMed  CAS  Google Scholar 

  6. Borwn, E. M., Gamba, G., Richard, D. et al., Clong and characterization of an extracellular ca2+-sensing receptor from bovine parathyroid, Nature, 1993, 366: 575.

    Article  Google Scholar 

  7. Nemeth, E. F., Ca2+ receptor-dependent regulation of cellular functions new in physiological, Science, 1995, 10: 1.

    CAS  Google Scholar 

  8. Chattopadhyay, N., Mithal, A., Brown, E. M., The calcium-sensing receptor: A window into the physiology and pathophysiology of mineral ion metabolism, Endocrine Reviews, 1996, 17(4): 289.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, E. M., Vassilev, P. M., Hebert, S. C., Ca2+ ions as extracellular messenger, Cell, 1993, 75: 1297.

    Article  PubMed  Google Scholar 

  10. Przybylski, R. J., Szigeti, V., Kirby, A. C. et al., Calcium regulation of skeletal myogenesis II—Extracellular and cell surface effects, Cell Calcium, 1994, 15: 132.

    Article  PubMed  CAS  Google Scholar 

  11. Biro, R. L., Sun, D. Y., Roux, S. J. et al., Characterization of oat calmodulin and tadioirnmunoassay of its subcellular distribution, Plant Physiol., 1984, 75: 382.

    Article  PubMed  CAS  Google Scholar 

  12. Crocker, D. G., Dawson, R. A., MacNeil, S., et al., An extracellular role for calmodulin-like activity in cell proliferation, Biochem. J, 1988, 253: 877.

    PubMed  CAS  Google Scholar 

  13. Ye, Z. H., Sun, D. Y., Guo, J. F., Preliminary study on wheat cell wall calmodulin, Chinese Science Bulletin, 1989, 34(2): 158.

    CAS  Google Scholar 

  14. Li, J. X., Liu, J. W., Sun, D. Y., Immunoelectron microscopic localization of CaM in root tip cell, Cell Research, 1993, 3: 11.

    Google Scholar 

  15. Remgard, P., Ekstrom, P. A. R., Ekstrom, A. et al., Calmodulin and vitro regenerating frog sciatic nerves: release and extracellular effects, European J. Neuroscience, 1995, 7: 1386.

    Article  CAS  Google Scholar 

  16. MacNeil, S., Walker, S. W., Tomlinson, S. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 Melanoma cell growth, Dermat., 1984, 83(1): 15.

    CAS  Google Scholar 

  17. Woodward, B. J., Lenton, E. A., MacNeil, S., Requirement of preimplantation human embryos for extracellular calmodulin for development, Human Repro., 8(2): 272.

  18. Sun, D. Y., Li, H. B., Cheng, G., Extracellular calmodulin acceleration of suspension-cultured cells of Angelica dahurica, Plant Sci., 1994, 99: 1.

    Article  CAS  Google Scholar 

  19. Sun, D. Y., Bion, Y. Q., Zhao, B. H. et al., The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division, Plant Cell Physiol., 1995, 36: 133.

    CAS  Google Scholar 

  20. Ma Ligeng, Sun, D. Y., The effects of extracellular calmodulin on initiation of Hipeastrum rutilum pollen germination and tube growth, Planta, 1997, 202: 336.

    Article  Google Scholar 

  21. Tang, J., Wu, S. P., Sun, D. Y. et at., Extracellular calrnodulin-binding proteins in plants: purification of a 21-KDa calmodulin-binding protein, Planta, 1996, 98: 510.

    Google Scholar 

  22. Mao Guohong, Tang Wenqiang, Sun Daye, Preliminary study on the physiological function of extracellular 21 ku calrnodulin-binding protein from Angelica dahurica, Acta Phytophysiologica Sinica (in Chinese), 1999, 25(2): 165.

    Google Scholar 

  23. Tang, W. Q., Guo, Y., Sun, D. Y. et al., Extracellular calrnodulin-binding proteins in body fluids of animals, J. Endocr., 1997, 155: 13.

    Article  Google Scholar 

  24. Ma Ligeng, Xu Xiaodong, Cui Sujuan et at., The present of heterotrimeric G protein and its role in signal tranduction of extracellular calmodulin in pollen germination and tube growth, Plant Cell, 1999, 11: 1351.

    Google Scholar 

  25. Ma Ligeng, Xu Xiaodong, Cui Sujuan et al., The involvement of phosphoinositide signaling pathway in the initiatory effects of extracellular calmodulin on pollen germination and tube growth, Acta Phytopbysiologica Sinica (in Chinese), 1998, 24(2): 196.

    Google Scholar 

  26. Kiedrowski, L., Which cerebellar cells contribute to extracellular cGMP? Behav. Brain Sci., 1996, 19(3): 464.

    Google Scholar 

  27. Globus, M. Y. T., Prado, R., Busto, R., Ischemia-induced changes in extracellular levels of striatal cGMP: Role of nitric oxide, Nouro Report, 1995, 6(14): 1902.

    Google Scholar 

  28. Chevalier, R. L., Fang, G. D., Garmey, M., Extracellular cGMP inhibits transepithelial sodium transport by LLC-PK renal tubular cells, Am. J. of Phsiol., 1996, 270(2): F283.

    CAS  Google Scholar 

  29. Pawlikowska, L., Cottrell, S. E., Rosenberg, P. A., Extracellular synthesis of cADP-ribose from nicotinamideadenine dinucleotide by rat cortical astrocytes in culture, The J. of Neuro Science, 1996, 16(17): 5372.

    CAS  Google Scholar 

  30. Siever, D. A., Erickson, H. P., Extracellular Annexin II, Int. J. Biochem. Cell Biol., 1997, 29(11): 1219.

    Article  PubMed  CAS  Google Scholar 

  31. Marx, J., Plants like animals may make use of peptide signals, Science, 1996, 273(6): 1338.

    Article  PubMed  CAS  Google Scholar 

  32. Chen, Y. P., O’Toole, T. E., Ginsberg, M. H. et al., “Inside-out” signal transduction inhibited by isolated integrin cytoplasmic domains, The J. Biological Chemistry, 1994, 269(28): 18307.

    CAS  Google Scholar 

  33. Wolpert, L., One hundred years of positional information, Trends Genet., 1996, 12: 359.

    Article  PubMed  CAS  Google Scholar 

  34. Brownlee, C., Berger, F., Extracellular matrix and pattern in plant embryos: on the lookout for developmental information, TIG, 1995, 11(9): 344.

    PubMed  CAS  Google Scholar 

  35. Berger, F., Taylor, A., Brownlee, C., Cell fate determination by cell wall in early Fucus development, Science, 1994, 263: 1421.

    Article  PubMed  Google Scholar 

  36. Kreuger, M., Holst, G-JV., Arabinogalactan proteins and plant differentiation, Plant Mol. Biol., 1996, 30: 1077.

    Article  PubMed  CAS  Google Scholar 

  37. Fleming, A. T., McCueen-Mason, S., Kuhlemeier, C. et al., Induction of leaf primordia by the cell wall protein expansion, Science, 1996, 273: 1415.

    Article  Google Scholar 

  38. Strauss, E., When wall can talk, plant biologists listen, Science, 1998, 276: 1415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sun, D. The universality and biological significance of signal molecules with intracellular-extracellular compatible functions. Chin.Sci.Bull. 45, 1729–1734 (2000). https://doi.org/10.1007/BF02886255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886255

Keywords

Navigation