Skip to main content
Log in

Evidence for oxidative damage to prion protein in prion diseases

  • Papers
  • Published:
Chinese Science Bulletin

Abstract

In prion diseases the irreversible protein structural transformation process is completed in the brains of mammals within a few months, the uniformly generated infectivity displays extraordinary resistance to inactivation, suggesting that a vital energy source is required for the production of infectious particles. Considering the high oxygen-respiration rate in the brains, prion protein oxidative damage can be the crucial factor. Both theoretical consideration of the nature of protein radical reactions and a large body of previously unraveled feature of scrapie and prion diseases have provided multiple distinct lines of compelling evidence which persuasively support a suggestion that the infectious agents may be prion (free) radicals produced from protein oxidative damage. This paper describes that scrapie prions are most likely formed from prion radicals and oxidative species-mediated sequence-specific cross-linking of benign prion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chesebro, B., BSE and prions: Uncertainties about the agent, Science, 1998, 279: 42.

    Article  PubMed  CAS  Google Scholar 

  2. Prusiner, S. B., Prion diseases and the BSE crisis, Science, 1997, 278: 245.

    Article  PubMed  CAS  Google Scholar 

  3. Hung, T., “Prions-proteinaceous infectious particles”, in Modern Medical Microbiology (in Chinese) (ed. Wen, Y. M.), Beijing: Education Press, 1996, 1312.

    Google Scholar 

  4. Edenhofer, F., Weiss, S., Winnacker, E. L. et al., Chemistry and molecular biology of transmissible spongiform encephalopathies, Angew. Chem. Int. Ed. Engl., 1997, 36: 1674.

    Article  Google Scholar 

  5. Gajdusek, D. C., Unconventional viruses and the origin and disappearance of Kuru, Science, 1977, 197: 943.

    Article  PubMed  CAS  Google Scholar 

  6. Chesebro, B., Human TSE disease—Viral or protein only? Nature Med., 1997, 3: 491.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, P., Preece, M. A., Will, R. G., “Friendly fire” in medicine: hormones, homografts, and Creutzfeldt-Jakob disease, Lancet, 1992, 340: 24.

    Article  PubMed  CAS  Google Scholar 

  8. Gibbs, C. J. Jr., Gajdusek, D. C., Ashe, D. M. et al., Creutzfeldt-Jakob disease (spongiform encephalopathy): Transmission to chimpanzee, Science, 1968, 161: 388.

    Article  PubMed  Google Scholar 

  9. Yang, C., M. Chen, Y., “Protein-only” or “virino” in prion diseases, Chinese Science Bulletin, 2000, 45: 285.

    Article  CAS  Google Scholar 

  10. Will, R. G., Cousens, S. N., Farrington, C. P. et al., Death from variant Creutzfeldt-Jakob disease, Lancet, 1999, 353: 979.

    Article  PubMed  CAS  Google Scholar 

  11. Pattison, I. H., Fifty years with scrapie: a personal reminiscence, Vet. Rec., 1988, 123: 661.

    PubMed  CAS  Google Scholar 

  12. Alper, T., Cramp, W. A., Haig, D. A. et al., Does the agent of scrapie replicate without nucleic acids? Nature, 1967, 214: 764.

    Article  PubMed  CAS  Google Scholar 

  13. Griffith, J. S., Self-replication and scrapie, Nature, 1967, 215: 1043.

    Article  PubMed  CAS  Google Scholar 

  14. Prusiner, S. B., Novel proteinaceous infectious particles cause scrapie, Science, 1982, 216: 136.

    Article  PubMed  CAS  Google Scholar 

  15. Collinge, J., Sidle, K. C., L., Meads, J. et al., Molecular analysis of prion strain variation and the aetiology of “new variant” CJD, Nature, 1996, 383: 685.

    Article  PubMed  CAS  Google Scholar 

  16. Will, R. G., Ironside, J. W., Oral infection by the bovine spongiform encephalopathy prion, Proc. Natl. Acad. Sci. USA, 1999, 96: 4738.

    Article  PubMed  CAS  Google Scholar 

  17. Prusiner, S. B., Scott, M. R., DeArmond, S. J. et al., Prion protein biology, Cell, 1998, 93: 337.

    Article  PubMed  CAS  Google Scholar 

  18. Bueler, H., Aguzzi, A., Sailer, A. et al., Mice devoid of PrP are resistant to scrapie, Cell, 1993, 73: 1339.

    Article  PubMed  CAS  Google Scholar 

  19. Safar, J., Wille, H., Itri, V. et al., Eight prion strains have PrPSc molecules with different conformations, Nature Med., 1998, 4: 1157.

    Article  PubMed  CAS  Google Scholar 

  20. Harrison, P. M., Bamborough, P., Daggett, V. el al., The prion folding problem, Curr. Opin. Struct. Biol., 1997, 7: 53.

    Article  PubMed  CAS  Google Scholar 

  21. Farquhar, C., F., Somerville, R. A., Bruce, M. E., Straining the prion hypothesis, Nature, 1998, 391: 345.

    Article  PubMed  CAS  Google Scholar 

  22. Manuelidis, L., Sklaviadis, T., Akowitz, A. et al., Viral particles are required for infection in neurodegenerative Creutzfeldt-Jakob disease, Proc. Natl. Acad. Sci. USA, 1995, 92: 5124.

    Article  PubMed  CAS  Google Scholar 

  23. Lasmèzas, C., I., Destys, J. P., Robain, O. et al., Transmission of BSE agent to mice in the absence of detectable abnormal prion protein, Science, 1997, 275: 402.

    Article  PubMed  Google Scholar 

  24. Caughey, B., Chesebro, B., Prion protein and TSE, Trends Cell Bio., 1997, 7: 56.

    Article  CAS  Google Scholar 

  25. Yang, C., M., Prion radicals—a marriage between the big and the small, http://www.chemistrymag.org/col/1999/c99086. htm (Chemistry Online 1999).

  26. Minor, D. L. Jr., Kim, P. S., Context is a major determinant of β-sheet propensity, Nature, 1994, 371: 264.

    Article  PubMed  CAS  Google Scholar 

  27. Stadiman, E. R., Oxidation of free amino acid residues in proteins by radiolysis and by metal-catalyzed reactions, Annu. Rev. Biochem., 1993, 62: 797.

    Article  Google Scholar 

  28. Pryor, W. A., The role of free radical reactions in biological systems, in Free Radical in Biology, Vol. 1 (ed. Pryor, W. A.). New York: Academic Press, 1976, 1.

    Google Scholar 

  29. DebBurman, S. K., Raymond, G. J., Caughey, B. et al., Chaperone-supervised conversion of prion protein to its protease-resistant form, Proc. Natl. Acad. Sci. USA, 1997, 94: 13938.

    Article  PubMed  CAS  Google Scholar 

  30. Anfinsen, C., B., Principles that govern the folding of protein chains, Science, 1973, 181: 223.

    Article  PubMed  CAS  Google Scholar 

  31. Liemann, S., Glockshuber, R., Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein, Biochemistry, 1999, 38: 3258.

    Article  PubMed  CAS  Google Scholar 

  32. Eberson, L. E., Electron Transfer Reaction, Berlin: Springer-Verlag, 87, 56.

  33. Lowry, T. H., Richardson, K. S., Mechanism and Theory in Organic Chemistry, 3rd ed., New York: Harpe & Row, 1985, 161.

    Google Scholar 

  34. Tanner, D. D., Yang, C., M., The use of chemical probes to differentiate between polar and SET-hydrogen atom abstraction pathways involved in the reactions prompted by 1,2- and 1,4-dihydropyridine derivatives, J. Org. Chem., 1993, 58: 5907.

    Article  CAS  Google Scholar 

  35. Prusiner, S. B., Groth, D., Serban, A. et al., Attempts to restore scrapie prion infectivity after exposure to protein denaturants, Proc. Natl. Acad. Sci. USA., 1993, 90: 2793.

    Article  PubMed  CAS  Google Scholar 

  36. Aguzzi A., Weissmann, C., Prion research: the next frontiers, Nature, 1997, 389: 795.

    Article  PubMed  CAS  Google Scholar 

  37. Prusiner, S. B., Molecular biology of prion disease, Science, 1991, 252: 1515.

    Article  PubMed  CAS  Google Scholar 

  38. Bellinger-Kawahara, C. G., Kempner, E., Groth, D. F. et al., Scrapie prion liposomes and rods exhibit target sizes of 55 000 Da, Virology, 1988, 164: 537.

    Article  PubMed  CAS  Google Scholar 

  39. Raymond, G. J., Hope, J., Kocisko, D. A. et al., Molecular assessment of the potential transmissibilities of BSE and scrapie to humans, Nature, 1997, 388: 285.

    Article  PubMed  CAS  Google Scholar 

  40. Brown, D. R., Schaeffer, W. J., Schmidt, B. et al., Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity, Experimental Neurology. 1997, 146: 104.

    Article  PubMed  CAS  Google Scholar 

  41. Basier, K., Oesch, B., Scott, M. et al., Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene, Cell, 1986, 46:417.

    Article  Google Scholar 

  42. Caughey, W. S., Raymond, L. D., Horiuchi, M. et al., Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl. Acad. Sci. USA, 1998, 95: 12117.

    Article  PubMed  CAS  Google Scholar 

  43. Caspi, S., Halimi, M., Yanai, A. et al., The anti-prion activity of Congo red—putative mechanism, J. Biol. Chem., 1998, 273: 3484.

    Article  PubMed  CAS  Google Scholar 

  44. Sayre, L. M., Perry, G., Smith, M. A., Redox metals and neurodegenerative disease, Curr. Opin. Chem. Biol., 1999, 3: 220.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, C., M., Structures and Homolytic vs Heterolytic Reactivities of Main-Group Organometallics, Edmonton (Canada): University of Alberta Press, 1992, 1–30.

    Google Scholar 

  46. Stubbe, J., van der Donk, W. A., Protein radicals in enzyme catalysis, Chem. Rev., 1998, 98: 705.

    Article  PubMed  CAS  Google Scholar 

  47. Stubbe, J., Kozarich, J., Bleomycin: A structural model for specificity, binding, and double strand cleavage, Acc. Chem. Res., 1996, 29: 322.

    Article  CAS  Google Scholar 

  48. Markesbery, W. R., Oxidative stress hypothesis in Alzheimer’s disease, Free Radical Biol. Med., 1997, 23:134.

    Article  CAS  Google Scholar 

  49. Liu, A., Potsch, S., Davydov, A. et al., The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket, Biochemistry, 1998, 37: 16369.

    Article  PubMed  CAS  Google Scholar 

  50. Fu, S., Davies, M. J., Stocker, R. et al., Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque, Biochem. J., 1998, 333(Pt3): 519.

    PubMed  CAS  Google Scholar 

  51. Gill, G., Richter-Rusli, A. A., Ghosh, M. t al., Nickel-dependent oxidative cross-linking of a protein, Chemical Research in Toxicology, 1997, 10: 302.

    Article  PubMed  CAS  Google Scholar 

  52. Ostdal, H., Andersen, H. J., Davis, M. J., Formation of long-lived radicals on proteins by radical transferred from heme enzymes-A common process Archives Biochem & Biophysics, 1999, 362:105.

    Article  CAS  Google Scholar 

  53. Stahl, N., Baldwin, M. A., Teplow, D. B. t al., Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing, Biochemistry, 1993, 32: 1991.

    Article  PubMed  CAS  Google Scholar 

  54. Voet, D., Voet, J. G., Biochemistry, 2nd ed., New York: John Wiley & Son, Inc., 1995, 108.

    Google Scholar 

  55. Yang, C., M., Protein radical mechanism in bovine spongiform encephalopathies (BSE) and Creutzfeldt-Jakob disease (CID), Chemical J. Internet, 1999, 1: 1. http://www.chemistrymag.org/cji/1999/011006le.htm.

    Google Scholar 

  56. Yang, C., M., Chen, Y., Perspective on protein radical chemistry in prions and BSE, Chemistry Bulletin (Huaxue Tongbao) (in Chinese), 2000, 1: 60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiming Yang.

About this article

Cite this article

Yang, C. Evidence for oxidative damage to prion protein in prion diseases. Chin.Sci.Bull. 45, 1546–1554 (2000). https://doi.org/10.1007/BF02886210

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02886210

Keywords

Navigation