Skip to main content
Log in

Aspartate kinase and homoserine dehydrogenase ofCandida utilis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Aspartate kinase and homoserine dehydrogenase activity were assayed in a dialyzed cell-free extract ofCandida utilis. Aspartate kinase was partly inhibited by ATP-Mg and by Mg2+ alone. There appear to be two isoenzymes of aspartate kinase in the yeast, one heatlabile, the other relatively heat-stable. The first is subject to feedback inhibition by threonine, the other is threonine-resistant. Neither aspartate kinase nor homoserine dehydrogenase is the rate-limiting enzyme in methionine biosynthesis. Homoserine dehydrogenase measured in the forward direction showed an activity five times higher than aspartate kinase. No regulatory interaction could be demonstrated for this enzyme. No repression of aspartate kinase and homoserine dehydrogenase synthesis by threonine, methionine or both amino acids was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Alvarez X., Herrera L.: Aislamiento de mutantes ricos en metionina enCandida utilis.Revista CENIC Cien. Fis. 6, 87 (1975).

    Google Scholar 

  • Black S., Wright N.G.: Aspartokinase and aspartylphosphate.J. Biol. Chem. 213, 27 (1955a)

    PubMed  CAS  Google Scholar 

  • Black S., Wright N.G.: Homoserine dehydrogenase.J. Biol. Chem. 213, 51 (1955b).

    PubMed  CAS  Google Scholar 

  • Black S., Wright N.C.: Aspartic semialdehyde dehydrogenase and aspartic semialdehyde.J. Biol. Chem. 213, 39 (1955c).

    PubMed  CAS  Google Scholar 

  • Cleland W.: Steady state kinetics, p. 1 in P.D. Boyer (Ed.):The Enzymes, Vol. II. Academic Press, New York 1970.

    Google Scholar 

  • Cohen G.N.: The aspartokinases and homoserine dehydrogenases ofEscherichia coli.Curr. Top. Cell. Regul. 1, 183 (1969).

    CAS  Google Scholar 

  • Delgado J.M., Alonso A., Alvarez X., Herrera L.: Methionine-defective mutants inCandida utilis.Folia Microbiol. 26 184 (1981).

    Article  CAS  Google Scholar 

  • Fiske C.H., SubbaRow Y.: The colorimetric determination of phosphate.J. Biol. Chem. 66, 375 (1925).

    CAS  Google Scholar 

  • Gornall C.A., Bardawill G.J., David M.M.: Determination of serum proteins by means of the biuret reaction.J. Biol. Chem. 177, 751 (1949).

    PubMed  CAS  Google Scholar 

  • Huber-Wälchli V., Wiemken A.: Differential extraction of soluble pools from the cytosol and the vacuole of yeast (Candida utilis) using DEAE-dextran.Arch. Microbiol. 120, 141 (1979).

    Article  Google Scholar 

  • Karassevitch Y., de Robichon-Szulmajster H.: Regulation métabolique de la biosynthèse de la methionine et de la thréonine chezSaccharomyces cerevisiae. II. Repression et inhibition de l’homoserine deshydrogenase.Biochim. Biophys. Acta 73, 414 (1963).

    Article  CAS  Google Scholar 

  • Messenguy F., Colin D., Ten Have J.P.: Régulation of compartmentation of amino acid pools inSaccharomyces cerevisiae and its effect on metabolic control.Eur. J. Biochem. 108, 439 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Michalik J., Raczyňska-Bojanowska K.: Aspartate kinase inCandida tropicalis.Bull. Acad. Polon. Sci., Ser. Sci. Biol. 24, 309 (1976).

    CAS  Google Scholar 

  • Robert-Gero M., Poiret M., Cohen G.M.: The aspartate kinase ofPseudomonas putida. Regulation of synthesis and activity.Biochim. Biophys. Acta 206 17 (1970).

    PubMed  CAS  Google Scholar 

  • de Robichon-Szulmajster H., Corrivaux D.: Régulations métaboliques de la biosynthèse de la methionine et de la threonine chezSaccharomyces cerevisiae. I. Repression et retroinhibition de l’aspartokinase.Biochim. Biophys. Acta 73, 248 (1963).

    Article  PubMed  Google Scholar 

  • Sakoda M., Hiromi K.: Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion.J. Biochem. 80, 547 (1976).

    PubMed  CAS  Google Scholar 

  • Seibold M., Nill K., Paralla K.: Homoserine and threonine pools of borrelidin-resistantSaccharomyces cerevisiae mutants with altered aspartokinase.Arch. Microbiol. 129, 368 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Stadtman E.R., Cohen G.N., LeBras G., de Robichon-Szulmajster H.: Feedback inhibition and repression of aspartate kinase activity inEscherichia coli andSacharomyces cerevisiae.J. Biol. Chem. 236, 2033 (1961).

    CAS  Google Scholar 

  • Wiemken A., Nurse P.: Isolation and characterization of the amino acid pools located within the cytoplasm and vacuoles ofCandida utilis.Planta 109, 293 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benítez, J.A., Delgado, J.M. & Herrera, L.S. Aspartate kinase and homoserine dehydrogenase ofCandida utilis . Folia Microbiol 28, 149–156 (1983). https://doi.org/10.1007/BF02884077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02884077

Keywords

Navigation